Appendix A — Common Distributions

A.1 Bernoulli Distribution

Table A.1: Summary of the Bernoulli distribution
Property Description
Name Bernoulli distribution
Notation \(\text{Bernoulli}(\pi)\)
Parameters \(0 \le \pi \le 1\): probability of success
Support \(x \in \{0,1\}\)
PMF \(f(x) = \pi^x (1-\pi)^{1-x}\)
CDF \(F(x) = 0\) for \(x < 0\); \(1-\pi\) for \(0 \le x < 1\); \(1\) for \(x \ge 1\)
Mean \(\pi\)
Variance \(\pi(1-\pi)\)
R functions dbern(x, prob) (PMF)
pbern(q, prob) (CDF)
qbern(p, prob) (quantile)
rbern(n, prob) (random sampling)
(from extraDistr package)
Special cases \(\text{Binomial}(n=1, \pi)\) is \(\text{Bernoulli}(\pi)\).

A.2 Beta Distribution

Table A.2: Summary of the Beta distribution
Property Description
Name Beta distribution
Notation \(\text{Beta}(\alpha, \beta)\)
Parameters \(\alpha > 0\): shape; \(\beta > 0\): shape
Support \(x \in (0, 1)\)
PDF \(f(x) = \dfrac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}\)
CDF \(F(x) = I_x(\alpha, \beta)\), the regularized incomplete beta function
Mean \(\dfrac{\alpha}{\alpha + \beta}\)
Variance \(\dfrac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}\)
R functions dbeta(x, alpha, beta) (density)
pbeta(q, alpha, beta) (CDF)
qbeta(p, alpha, beta) (quantile)
rbeta(n, alpha, beta) (random sampling)
(base R)
Special cases \(\text{Beta}(1,1)\) is \(\text{Uniform}(0,1)\).

A.3 Location-Scale t Distribution

Table A.3: Summary of the location-scale \(t\) distribution
Property Description
Name Location-scale \(t\) distribution
Notation \(t(\mu, \sigma, \nu)\)
Parameters \(\mu \in \mathbb{R}\): location; \(\sigma > 0\): scale; \(\nu > 0\): degrees of freedom
Support \(x \in \mathbb{R}\)
PDF \(f(x) = \dfrac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi}\sigma} \left[1 + \dfrac{1}{\nu} \left(\dfrac{x - \mu}{\sigma}\right)^2\right]^{-\frac{\nu+1}{2}}\)
CDF \(F(x) = T_\nu\left(\dfrac{x - \mu}{\sigma}\right)\), where \(T_\nu\) is the CDF of the standard \(t\) distribution
Mean \(\mu\) for \(\nu > 1\); undefined for \(\nu \le 1\)
Variance \(\dfrac{\nu \sigma^2}{\nu - 2}\) for \(\nu > 2\); infinite for \(1 < \nu \le 2\); undefined for \(\nu \le 1\)
R functions dt.scaled(x, df, mean = mu, sd = sigma) (density)
pt.scaled(q, df, mean = mu, sd = sigma) (CDF)
qt.scaled(p, df, mean = mu, sd = sigma) (quantile)
rt.scaled(n, df, mean = mu, sd = sigma) (random sampling)
(from metRology package)
Special cases - \(t(0,1,\nu)\): standard Student’s \(t\)
- \(\nu \to \infty\): converges to \(\mathcal{N}(\mu, \sigma^2)\)
- Heavy-tailed alternative to the normal distribution

A.4 Negative Binomial Distribution

Table A.4: Summary of the negative binomial distribution
Property Description
Name Negative binomial distribution
Notation \(\text{NB}(\mu, r)\)
Parameters \(\mu > 0\): mean
\(r > 0\): size (dispersion)
Support \(x \in \{0,1,2,\ldots\}\)
PMF \(f(x) = \dfrac{\Gamma(x+r)}{\Gamma(r)\,x!} \left(\dfrac{r}{r+\mu}\right)^r \left(\dfrac{\mu}{r+\mu}\right)^x\)
CDF \(F(x) = \displaystyle \sum_{k=0}^{\lfloor x \rfloor} \dfrac{\Gamma(k+r)}{\Gamma(r)\,k!} \left(\dfrac{r}{r+\mu}\right)^r \left(\dfrac{\mu}{r+\mu}\right)^k\)
Mean \(\mu\)
Variance \(\mu + \dfrac{\mu^2}{r}\)
R functions dnbinom(x, size = r, mu = mu) (PMF)
pnbinom(q, size = r, mu = mu) (CDF)
qnbinom(p, size = r, mu = mu) (quantile)
rnbinom(n, size = r, mu = mu) (random sampling)
(base R)
Special cases As \(r \to \infty\), \(\text{NB}(\mu, r) \to \text{Poisson}(\mu)\).

A.5 Poisson Distribution

Table A.5: Summary of the Poisson distribution
Property Description
Name Poisson distribution
Notation \(\text{Poisson}(\lambda)\)
Parameters \(\lambda > 0\): rate (mean number of events per unit interval)
Support \(x \in \{0,1,2,\ldots\}\)
PMF \(f(x) = \dfrac{e^{-\lambda} \lambda^x}{x!}\)
CDF \(F(x) = \displaystyle \sum_{k=0}^{\lfloor x \rfloor} \dfrac{e^{-\lambda}\lambda^k}{k!}\)
Mean \(\lambda\)
Variance \(\lambda\)
R functions dpois(x, lambda) (PMF)
ppois(q, lambda) (CDF)
qpois(p, lambda) (quantile)
rpois(n, lambda) (random sampling)
(base R)
Special cases - Limit of \(\text{Binomial}(n,p)\) as \(n \to \infty\), \(p \to 0\) with \(np=\lambda\) fixed
- Distribution of counts in a homogeneous Poisson process
- Sum of independent \(\text{Poisson}(\lambda_i)\) is \(\text{Poisson}(\sum \lambda_i)\)