Opening Comments

Review

ATE

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Randomized Experiments

An Adventure in Nonparametric Inference

Opening Comments

Review

ATE

ÂTE

Var (ATE)

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Here's the packages we're using.

generally useful packages

library(tidyverse)

library(modelsummary)

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Opening Comments

Opening Comments

Review

ATE

ATE

 $Var\left(\widehat{ATE}\right)$ $\widehat{Var}\left(\widehat{ATE}\right)$

Asymptotics

Best Practices

Example

This week, we continue applied modeling!

- 1. engines: design-based inference!
- 2. distribution: none!
- 3. quantities of interest: the ATE!
- 4. evaluating models frequentist properties

Opening Comments

Review

ATE

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

The notation here follows Imbens and Rubin (2015). An exception is that I use ATE to represent their $\tau_{\rm fs}$ and $\widehat{\rm ATE}$ to represent their $\hat{\tau}_{\rm dif}$.

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Review

Review

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

 $\begin{array}{l} \circ \ \ \text{For discrete random variable } X\text{, } E(X) = \sum_{\text{all } x} x \cdot \Pr(X = x) \\ \circ \ \ \text{Var}(X) = E\left[(X - E(X))^2\right] = E\left[X^2\right] - E(X)^2. \end{array}$

Our goal is to obtain point estimates, variance estimates, and confidence intervals from randomized experiments using only the assumptions of the design.

Randomized Experiments

Opening Comments

Review

ATE

ATF

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

ATE

We have N units in our experiment and we assign N_t units to treatment and $N_c = N - N_t$ units to control. We require that $1 < N_t < N$, so that at least one unit is assigned to treatment and control.

We use the random variable W_i to assign unit i to treatment $\left(W_i=1\right)$ or control $\left(W_i=0\right)$.

For each unit i, we have two potential outcomes: $Y_i(1)$ if assigned to treatment and $Y_i(0)$ if assigned to control.

Opening Comments

ATE

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Best Practices

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

Var (ATE)
Asymptotics

Best Practices

Example

For unit $i \in \{1,...,N\}$, we have one observed potential outcome, denoted by $Y_i^{\mathrm{obs}}.$

$$Y_i^{\mathrm{obs}} = Y_i(W_i) = \begin{cases} Y_i(0) & \text{if } W_i = 0, \\ Y_i(1) & \text{if } W_i = 1. \end{cases}$$

For each unit, we also have one missing potential outcome, denoted by Y_i^{mis} :

$$Y_i^{\mathrm{mis}} = Y_i(1-W_i) = \begin{cases} Y_i(1) & \text{if } W_i = 0, \\ Y_i(0) & \text{if } W_i = 1. \end{cases}$$

Opening Comments

Review

ATE

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{Var}\left(\widehat{ATE}\right)$

Asymptotics

Best Practices

Example

So what is this $Y_i(\cdot)$ thing?

,		8 '					LS
	e	enin	ening (ening Co	ening Com	ening Comm	ening Commen

Review

ATE

ÂTE

 $Var\left(\widehat{ATE}\right)$ $\widehat{Var}\left(\widehat{ATE}\right)$

Asymptotics

Best Practices

Unit	$Y_i(0)$	$Y_i(1)$	$Y_i(1) - Y_i(0)$
1	0	1	1
2	1	2	1
3	0	0	0
4	1	3	2
5	0	1	1
6	1	2	1
7	0	0	0
8	1	3	2
9	0	1	1
10	1	2	1

Table 1: Mock Dataset with Potential Outcomes and Their Differences

Average Treatment Effect: Lets use these potential outcomes to define the average treatment effect (ATE) as

 $\begin{array}{l} \mathsf{ATE} = \frac{1}{N} \sum_{i=1}^N \left[Y_i(1) - Y_i(0) \right] = \overline{Y}(1) - \overline{Y}(0), \text{ where } \overline{Y}(0) \text{ and } \overline{Y}(1) \text{ are the averages of the potential control and treated outcomes respectively, so that } \overline{Y}(0) = \frac{1}{N} \sum_{i=1}^N Y_i(0) \text{ and } \overline{Y}(1) = \frac{1}{N} \sum_{i=1}^N Y_i(1). \end{array}$

In our case, we are explicitly interested in what we call today the **sample average treatment effect** (SATE). That is, were are interested in the ATE among the units *in our sample* not an existing or imagined larger population.

Randomized Experiments

Opening Comments

.....

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Two Potential Realization for the Experiment

Unit	$Y_i(0)$	$Y_i(1)$	W_i	Unit	$Y_i(0)$	$Y_i(1)$	W_i
1	?	1	1	1	0	?	0
2	1	?	0	2	?	2	1
3	?	0	1	3	0	?	0
4	1	?	0	4	?	3	1
5	0	?	0	5	?	1	1
6	?	2	1	6	1	?	0
7	0	?	0	7	?	0	1
8	?	3	1	8	1	?	0
9	0	?	0	9	?	1	1
10	?	2	1	10	1	?	0

Notice that we cannot compute the ATE from these data because we cannot never obtain $Y_i(1)-Y_i(0).$ (This is the fundamental problem of causal inference).

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics
Best Practices

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

An Estimator for the Average Treatment Effect

Suppose that we observe data from a completely randomized experiment in which $N_t = \sum_{i=1}^N W_i$ units are randomly selected to be assigned to treatment and the remaining $N_c = \sum_{i=1}^N (1-W_i)$ are assigned to control. Because of the randomization, a natural estimator for the average treatment effect is the difference in the average outcomes between those assigned to treatment and those assigned to control, so that

$$\widehat{\mathsf{ATE}} = \overline{Y}_t^{\mathsf{obs}} - \overline{Y}_c^{\mathsf{obs}},$$

where

$$\overline{Y}_c^{\text{obs}} = \frac{1}{N_c} \sum_{i:W_i = 0} Y_i^{\text{obs}} \quad \text{and} \quad \overline{Y}_t^{\text{obs}} = \frac{1}{N_t} \sum_{i:W_i = 1} Y_i^{\text{obs}}.$$

Recall that $Y_i^{\text{obs}}=Y_i(1)$ if $W_i=1$ and $Y_i^{\text{obs}}=Y_i(0)$ if $W_i=0.$ Thus we can write $\widehat{\text{ATE}}$ as

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^N \left(\frac{W_i \cdot Y_i(1)}{N_t/N} - \frac{(1-W_i) \cdot Y_i(0)}{N_c/N} \right).$$

pening Comments

Review

ATE

ÂTE

Var (ATE)

Asymptotics

_

Example

ample

¹See next slide

Why is
$$\widehat{\text{ATE}} = \overline{Y}_t^{\text{obs}} - \overline{Y}_c^{\text{obs}}$$
 a "natural" estimator of the ATE?

For both intuitive and rigorous reasons, simply replacing population moments (e.g., the population mean) with sample moments (e.g., the sample mean) produces a good estimator.

Here's a sketch of the theory. For distributions F that are "not too weird' (i.e., meet fairly weak regularity conditions), then the empirical cdf \hat{F} is a "good substitute" for F. It's a good substitute in the sense that $\hat{F}_N \to F$ as $N \to \infty$. This is an important "brute force" approach to nonparametric estimation.

In our case, we don't use it to defend the estimator, but to obtain a starting point.

pening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Var (ATE)

Asymptotics

Example

From our usual parametric modeling perspective, we imagine that the data are draw from a distribution $y_i \sim f(\theta_i)$.

But this approach to randomized experiments is not like that; we're not imagining the $Y_i(1)$ and $Y_i(0)$ are random. Instead, they are fixed values.

The only thing that's random in the equation below is W_i , which is the assignment to treatment and control. Because we designed that mechanism, we know its distribution. Thus we have design-based inference rather than model-based inference.

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^N \left(\frac{W_i \cdot Y_i(1)}{N_t/N} - \frac{(1-W_i) \cdot Y_i(0)}{N_c/N} \right).$$

Theorem: $\widehat{\mathsf{ATE}} = \overline{Y}_t^{\mathsf{obs}} - \overline{Y}_c^{\mathsf{obs}}$ is an unbiased estimator of ATE.

Proof.

We're trying to show that $E_W\left[\widehat{\text{ATE}}\right]=\text{ATE}.$ Walk through $(2)\to(3)$ together.

$$E_{W}\left[\widehat{\mathsf{ATE}}\right] = E_{W}\left[\overline{Y}_{t}^{\mathsf{obs}} - \overline{Y}_{c}^{\mathsf{obs}}\right] \tag{1}$$

$$= E_W \left[\frac{1}{N} \sum_{i=1}^{N} \left(\frac{W_i \cdot Y_i(1)}{N_t/N} - \frac{(1 - W_i) \cdot Y_i(0)}{N_c/N} \right) \right] \tag{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(E_W[W_i] \cdot Y_i(1) \frac{1}{N_t/N} - E_W[1 - W_i] \cdot Y_i(0) \frac{1}{N_c/N} \right)$$
 (3)

$$= \frac{1}{N} \sum_{i=1}^{N} (Y_i(1) - Y_i(0)) \tag{4}$$

$$= ATE (5)$$

Done! ATE is an unbiased estimator of ATE under the assumptions of the design. No parametric model of the data needed, just a (known) model of the the design.

Opening Comments

Review

ATE

ÂTE

 $Var\left(\widehat{ATE}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Opening Comments

Review

ΔTF

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Opening Comments

Review

ATE

Var (ÂTE)

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

To calculate the variance of $\widehat{\text{ATE}} = \overline{Y}_t^{\text{obs}} - \overline{Y}_c^{\text{obs}}$, we need $E_W[W_i^2]$ and $\text{Var}_W(W_i).$

We have

$$E_W[W_i^2] = E_W[W_i] = \frac{N_t}{N} \quad \text{and} \quad \operatorname{Var}_W(W_i) = \frac{N_t}{N} \left(1 - \frac{N_t}{N}\right).$$

Proof. Homework Exercise.

Randomized

Review

ÂTE

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Experiments

We also need $E_W[W_i \cdot W_{i'}]$.

$$E_W[W_i \cdot W_{i'}] = P_W(W_i = 1) \cdot P_W(W_{i'} = 1 | W_i = 1) = \frac{N_t}{N} \cdot \frac{N_t - 1}{N - 1}, \quad \text{for } i \neq j,$$

Theorem The variance of ATE is

$$\mathsf{Var}_W(\overline{Y}_t^{\mathsf{obs}} - \overline{Y}_c^{\mathsf{obs}}) = \frac{S_c^2}{N_c} + \frac{S_t^2}{N_t} - \frac{S_{tc}^2}{N},$$

where S_c^2 and S_t^2 are the variances of $Y_i(0)$ and $Y_i(1)$:

$$S_c^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(0) - \overline{Y}(0))^2, \quad \text{and} \quad S_t^2 = \frac{1}{N-1} \sum_{i=1}^N (Y_i(1) - \overline{Y}(1))^2,$$

and S_{tc}^2 is the variance of the unit-level treatment effects:

$$S_{tc}^2 = \frac{1}{N-1} \sum_{i=1}^{N} \left(Y_i(1) - Y_i(0) - (\overline{Y}(1) - \overline{Y}(0)) \right)^2.$$

Proof. Long and tedious! So here we go...

pening Comments

AIL

ATE Var (ATE)

Var (ATE)

Asymptotics

Best Practices

Remember,

$$\widehat{\mathsf{ATE}} = \frac{1}{N_t} \sum_{i=1}^N W_i \cdot Y_i^{\mathsf{obs}} - \frac{1}{N_c} \sum_{i=1}^N (1 - W_i) \cdot Y_i^{\mathsf{obs}}.$$

Re-arranging, we have

$$=\frac{1}{N}\sum_{i=1}^N \left(\frac{N}{N_t}\cdot W_i\cdot Y_i(1) - \frac{N}{N_c}\cdot (1-W_i)\cdot Y_i(0)\right).$$

It happens to be helpful to replace W_i with $D_i.$

$$D_i = W_i - \frac{N_t}{N} = \begin{cases} \frac{N_c}{N} & \text{if } W_i = 1, \\ -\frac{N_t}{N} & \text{if } W_i = 0. \end{cases}$$

Facts:

$$\circ E(D_i) = 0.$$

$$\circ \ \mathsf{Var}_W(D_i) = E[D_i^2] = \tfrac{N_t N_c}{N^2}.$$

Proof. Homework exercise.

pening Comments

Review

ATE

Var (ÂTE)

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

ATE

Var (ATE)

Var (ATE)

Asymptotics

Best Practices

Example

Another fact: For $i \neq j$ the distribution of $D_i \cdot D_j$ is

$$P_W(D_i \cdot D_j = d) = \begin{cases} \frac{N_t \cdot (N_t - 1)}{N \cdot (N - 1)} & \text{if } d = \frac{N_c^2}{N^2}, \\ \frac{2 \cdot N_t \cdot N_c}{N \cdot (N - 1)} & \text{if } d = -\frac{N_t N_c}{N^2}, \\ \frac{N_c \cdot (N_c - 1)}{N \cdot (N - 1)} & \text{if } d = \frac{N_t^2}{N^2}, \\ 0 & \text{otherwise.} \end{cases}$$

Thus,

$$E_W[D_i \cdot D_j] = \begin{cases} \frac{N_c \cdot N_t}{N^2} & \text{if } i = j, \\ -\frac{N_t \cdot N_c}{N^2 \cdot (N-1)} & \text{if } i \neq j. \end{cases}$$

Proof. Homework exercise.

opening Comments

Review

ATE

Var (ATE)

Var (ATE)
Asymptotics

Best Practices

Example

Written using D_i rather than W_i , the estimate is:

$$\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^N \left(\frac{N}{N_t} \cdot D_i + \frac{N_t}{N} \right) \cdot Y_i(1) - \frac{N}{N_c} \left(\frac{N_c}{N} - D_i \right) \cdot Y_i(0).$$

Re-arranging, this becomes

$$= \frac{1}{N} \sum_{i=1}^N (Y_i(1) - Y_i(0)) + \frac{1}{N} \sum_{i=1}^N D_i \cdot \left(\frac{N}{N_t} \cdot Y_i(1) + \frac{N}{N_c} \cdot Y_i(0) \right).$$

Exercise: Using the equation above, show that $\widehat{\mathsf{ATE}}$ is an unbiased estimator of ATE.

Best Practices Example

 $\mathsf{Var}_W(\widehat{\mathsf{ATE}}) = E_W \left[\frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N D_i D_j Y_i^+ Y_j^+ \right]$

Var (ATE)

random variable

 $\mathsf{Var}_W(\widehat{\mathsf{ATE}}) = \mathsf{Var}_W\left(\frac{1}{N}\sum_{i=1}^N D_i \cdot Y_i^+\right) = \frac{1}{N^2}E_W\left[\left(\sum_{i=1}^N D_i \cdot Y_i^+\right)^2\right].$

 $\widehat{\mathsf{ATE}} = \frac{1}{N} \sum_{i=1}^N (Y_i(1) - Y_i(0)) + \frac{1}{N} \sum_{i=1}^N D_i \cdot \overbrace{\left(\frac{N}{N_t} \cdot Y_i(1) + \frac{N}{N_-} \cdot Y_i(0)\right)}$

Let $Y_i^+ = (N/N_t)Y_i(1) + (N/N_c)Y_i(0)$. Then

Expanding, we get:

 $= \frac{1}{N^2} \sum_{i=1}^N (Y_i^+)^2 E_W[D_i^2] + \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N E_W[D_i \cdot D_j] \cdot Y_i^+ \cdot Y_j^+$

 $= \frac{N_c \cdot N_t}{N^4} \sum_{i=1}^{N} (Y_i^+)^2 - \frac{N_c \cdot N_t}{N^4 \cdot (N-1)} \sum_{i=1}^{N} \sum_{i \neq i} Y_i^+ \cdot Y_j^+$

 $= \frac{N_c \cdot N_t}{N^3 \cdot (N-1)} \sum_{i=1}^{N} (Y_i^+)^2 - \frac{N_c \cdot N_t}{N^3 \cdot (N-1)} \sum_{i=1}^{N} \sum_{i \in I} Y_i^+ \cdot Y_j^+$

Opening Comments

teview

ATE

Var (ÂTE)

Var (ATE)

Asymptotics

Best Practices

$$\begin{split} &= \frac{N_c \cdot N_t}{N^3 \cdot (N-1)} \sum_{i=1}^N \left(\frac{N}{N_t} \cdot Y_i(1) - \frac{N}{N_t} \cdot \overline{Y}(1) \right)^2 \\ &+ \frac{N_c \cdot N_t}{N^3 \cdot (N-1)} \sum_{i=1}^N \left(\frac{N}{N_c} \cdot Y_i(0) - \frac{N}{N_c} \cdot \overline{Y}(0) \right)^2 \\ &+ \frac{2 \cdot N_c \cdot N_t}{N^3 \cdot (N-1)} \sum_{i=1}^N \left(\frac{N}{N_t} \cdot Y_i(1) - \frac{N}{N_t} \cdot \overline{Y}(1) \right) \cdot \left(\frac{N}{N_c} \cdot Y_i(0) - \frac{N}{N_c} \cdot \overline{Y}(0) \right) \\ &= \frac{N_c}{N \cdot N_t \cdot (N-1)} \sum_{i=1}^N (Y_i(1) - \overline{Y}(1))^2 + \frac{N_t}{N \cdot N_c \cdot (N-1)} \sum_{i=1}^N (Y_i(0) - \overline{Y}(0))^2 \\ &+ \frac{2}{N \cdot (N-1)} \sum_{i=1}^N (Y_i(1) - \overline{Y}(1)) \cdot (Y_i(0) - \overline{Y}(0)). \end{split}$$

$$\begin{split} S_{tc}^2 &= \frac{1}{N-1} \sum_{i=1}^N \left(Y_i(1) - \overline{Y}(1) - (Y_i(0) - \overline{Y}(0)) \right)^2 \\ &= \frac{1}{N-1} \sum_{i=1}^N \left(Y_i(1) - \overline{Y}(1) \right)^2 + \frac{1}{N-1} \sum_{i=1}^N \left(Y_i(0) - \overline{Y}(0) \right)^2 \\ &- \frac{2}{N-1} \sum_{i=1}^N \left(Y_i(1) - \overline{Y}(1) \right) \cdot \left(Y_i(0) - \overline{Y}(0) \right) \\ &= S_t^2 + S_c^2 - \frac{2}{N-1} \sum_{i=1}^N \left(Y_i(1) - \overline{Y}(1) \right) \cdot \left(Y_i(0) - \overline{Y}(0) \right). \end{split}$$

Hence, the expression in (Result 1) is equal to

$$\begin{split} \mathsf{Var}_W(\overline{Y}_t^{\mathsf{obs}} - \overline{Y}_c^{\mathsf{obs}}) &= \frac{N_c}{N \cdot N_t} \cdot S_t^2 + \frac{N_t}{N \cdot N_c} \cdot S_c^2 \\ &\quad + \frac{1}{N} \left(S_t^2 + S_c^2 - S_{tc}^2 \right) \\ &= \frac{S_t^2}{N_t} + \frac{S_c^2}{N_c} - \frac{S_{tc}^2}{N}. \end{split}$$

Opening Comments

.....

ATE

Var (ATE)

Var (ATE)

Asymptotics

Best Practices

Opening Comments

Review

ATE

ÂTE

 $Var\left(\widehat{ATE}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

For a given set of potential outcomes, we now know the variance. But to make inferences, we need to be able to *estimate* this variance using the observed data $Y_i^{\rm obs}$.

An unbiased estimator for S_c^2 is

$$s_c^2 = \frac{1}{N_c-1} \sum_{i:W_i=0} \left(Y_i(0) - \overline{Y}_c^{\text{obs}}\right)^2 = \frac{1}{N_c-1} \sum_{i:W_i=0} \left(Y_i^{\text{obs}} - \overline{Y}_c^{\text{obs}}\right)^2.$$

Similarly, an unbiased estimator for S_c^2 is

$$s_t^2 = \frac{1}{N_t - 1} \sum_{i:W_i = 1} \left(Y_i(1) - \overline{Y}_t^{\mathsf{obs}} \right)^2 = \frac{1}{N_t - 1} \sum_{i:W_i = 1} \left(Y_i^{\mathsf{obs}} - \overline{Y}_t^{\mathsf{obs}} \right)^2.$$

Opening Comments

Review

AIL

Var (ATE)

Var (ATE)

Asymptotics

Best Practices

ATE

Var (ATE)

Var (ATE)

Asymptotics

Best Practices

Example

The third term, S_{tc}^2 is the tricky one. This is population variance of the unobservable unit-level treatment effects—we cannot estimate this quantity.

We can only make assumptions about this quantity.

Assumption 1 (Sharp Null): If the treatment effect $Y_i(1) - Y_i(0)$ equals zero, then an unbiased estimator of the variance of \widehat{ATE} is

$$\widehat{\text{Var}}(\widehat{ATE}) = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t}. \tag{Neyman Variance Estimator)}$$

Assumption 2 (Constant Effects): If the treatment effect $Y_i(1) - Y_i(0)$ is constant, then an unbiased estimator of the variance of \widehat{ATE} is also Neyman's variance estimator.

Opening Comments

Review

ATE

ATE

Var (ATE)

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Without an Assumption: For any $Y_i(1)$ and $Y_i(0)$, then expectation of Neyman's variance estimator is *at least* as large as the actual variance.

$$\mathsf{Var}_W(\overline{Y}_t^{\mathsf{obs}} - \overline{Y}_c^{\mathsf{obs}}) = \frac{S_t^2}{N_t} + \frac{S_c^2}{N_c} - \frac{S_{tc}^2}{N}.$$

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Asymptotics

Opening Comments

Review

ATE

ATE Var (ATE)

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

In Section 3 (pp. 1763-1763), Li and Deng (2017) provide a finite version of the CLT, so long as the potential outcomes are "not too weird."

A conservative
$$(1-\alpha) \times 100\%$$
 CI is $\widehat{\text{ATE}} \pm \Phi^{-1} \left(1-\frac{\alpha}{2}\right) \cdot \sqrt{\widehat{\text{Var}}\left(\widehat{\text{ATE}}\right)}.$

For a 90% confidence interval, this would be
$$\widehat{\text{ATE}} \pm 1.96 \cdot \sqrt{\widehat{\text{Var}} \left(\widehat{\text{ATE}} \right)}.$$

Asymptotically, this interval has coverage of at least $(1-\alpha)\times 100\%.$

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

Best Practices

Estimation

- It turns out that OLS with robust standard errors (HC2) is equivalent to the different-in-means and Neyman variance estimator we proposed above.
 See Samii and Aronow (2016).
- In practice, we obtain estimates with something like the following:

```
fit <- lm(y ~ treatment_indicator, data = df)
V_hat <- sandwich::vcovHC(fit, type = "HC2")</pre>
```

Adjustment

- Some authors are critical of regression adjustment for experimental data (Freedman 2008).
- However, in my view the dangers are mostly theoretical. In real world problems, regression adjust will almost always give you better estimates, sometimes much better estimates
 - Simply include controls.
 - o Include mean-centered controls fully interacted with treatment.
 - · Select controls with LASSO.

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Opening Comments

Review

ATE

ÂTE

 $\mathsf{Var}\left(\widehat{\mathsf{ATE}}\right)$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Best Practices

Example

The Coversight Experiment

```
# load packages
library(tidyverse)
# read cleaned data from dropbox
coversight <- read rds("https://www.dropbox.com/s/9grn8kkb5yzwagx/data.rds?raw=1")%>%
  select(pres_overall, amplify, failure, pid_strength, passed_mvc1) %>%
  filter(passed mvc1) %>% # remove respondents who failed MVC 1
 mutate(pid strength rs = arm::rescale(pid strength)) # center partisan strength
# quick look
glimpse(coversight)
Rows: 1,462
Columns: 6
$ pres_overall
                  <dbl> 0, 1, -3, 0, 2, 3, 2, -3, -3, 0, -~
                  <fct> Amplify, Ignore, Amplify, Ignore, ~
$ amplify
                  <fct> Failure, Failure, Failure, Failure~
$ failure
                  <dbl> 3, 3, 3, 0, 2, 2, 3, 3, 2, 3, 3, 3~
$ pid_strength
$ passed_mvc1
                  <lg1> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE~
```

\$ pid strength rs <dbl> 0.5027, 0.5027, 0.5027, -0.9731, 0~

Opening Comments

Review

ATE

ATE

Var (ATE)

Var (ATE)

Asymptotics

Best Practice

Review

ATE

ATF

 $Var(\widehat{ATE})$

 $\widehat{\mathsf{Var}}\left(\widehat{\mathsf{ATE}}\right)$

Asymptotics

Success Failure 366 364

cs_failure <- coversight %>%

table(cs failure\$failure)

filter(amplify == "Amplify")

use only data from amplify condition (failure/success varies)

Best Practices

Review

ATE

 $Var\left(\widehat{ATE}\right)$ $\widehat{Var}\left(\widehat{ATE}\right)$

Asymptotics

Example

Best Practices

```
# make y for convenience
y <- cs_failure$pres_overall</pre>
treat <- as.numeric(cs failure$failure == "Failure")</pre>
# compute point estimate
mean(y[treat == 1]) - mean(y[treat == 0])
[1] -1.23
# compute variance estimate
var(y[treat == 1])/sum(treat) + var(y[treat == 0])/sum(1 - treat)
[1] 0.0147
# ols with robust ses
fit <- lm(y ~ treat)
coef(fit)["treat"]
t.reat.
-1.23
diag(sandwich::vcovHC(fit, type = "HC2"))["treat"]
treat.
0.0147
```

```
Randomized
fit1 <- lm(pres_overall ~ failure, data = cs_failure)</pre>
                                                                                          Experiments
fit2 <- lm(pres_overall ~ failure + I(pid_strength_rs + 100), data = cs_failure)
fit3 <- lm(pres_overall ~ failure*pid_strength_rs, data = cs_failure)
modelsummary(list("No Controls" = fit1,
                                                                                      Review
                   "One Control" = fit2,
                                                                                      ATE
                   "One Control, Interacted" = fit3),
                                                                                      ATE
              vcov = "HC2",
              gof_map = NA,
                                                                                      Var (ATE)
              escape = TRUE,
                                                                                      Var (ATE)
              output = "latex")
                                                                                      Asymptotics
                                                                                         st Practices
```

				Best Prac
	No Controls	One Control	One Control, Interacted	Example
(Intercept)	-0.650	17.973	-0.657	_
	(0.099)	(12.081)	(0.099)	
failureFailure	-1.234	-1.224	-1.225	
	(0.121)	(0.121)	(0.121)	
$I(pid_strength_rs + 100)$		-0.186		
		(0.121)		
pid_strength_rs			-0.156	
			(0.199)	
$failure Failure \times pid_strength_rs$			-0.061	
			(0.241)	