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Algorithm: Rejection Sampling®

Inputs:
e The unnormalized posterior f(7 | y) on [0, 1].
e Desired number of draws S.
e Envelope constant M such that M > f(r) V.

Algorithm:
1. Initialize:Sets=1.

2. Repeat until s =5 :
(a) z ~ Uniform(0, 1).
(b) u ~ Uniform(0, 1).
(c) Accept—reject step:
If u < f(2)/M, accept: set 7(*) = 2, s s+ 1.
Otherwise, reject z and return to Step 2a.

Output: 7V, 72 75 ~ f(1 | y).

“To make the rejection algorithm simple, I've written it to apply specifically
to the posterior for the Bernoulli model, which has support [0, 1]. The target
density doesn’t need to be a posterior and can have support other than [0, 1].
The proposal distribution doesn’t have to be uniform. The key is that M is

larger than the maximum of the target distribution and draws are accepted
with probability f(z)/M.



Illustrating the logic of the rejection algorithm
For a beta(4, 10) target distribution.
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Samples from rejection algorithm
10,000 accepted samples; 30,870 rejected values
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Metropolis



Algorithm: Metropolis Sampling
Inputs:

o The unnormalized log-posterior log f(6 | y).
e Desired number of iterations S.

e Tuning parameter 7 controlling the width of the uniform pro-
posal.

Algorithm:
1. Initialize: Choose 1) and set s = 1.
2. Repeat until s = S:

(a) Propose: Draw z ~ Uniform(6(®) — 7, (%) 4 7).
(b) Compute log-acceptance: A = log f(z) —log f(6(%)).
(c) Accept—reject step:

e Draw u ~ Uniform(0,1).

o Iflogu < A, accept: set 005D = z: otherwise set
g(s+1) — g(s) a

(d) Increment s < s+ 1.

Output: A Markov chain {#(V), 03 . . 69} with stationary dis-
tribution f(0 | y). Consecutive draws are dependent; discard a
burn-in and tune 7 to maintain an acceptance rate of roughly 0.2—

0.5.

“This is equivalent to accepting with probability min{1, f(z)/f(6))},
meaning we always accept moves toward higher density and sometimes accept
moves toward lower density.



metrop <- function(logf, theta_start, S = 10000, tau = 0.1, ...) o
# initialize matrix of samples with starting values
k <— length(theta_start)
samples <— matrix(NA real , nrow =S, ncol = k)
samples[1l, ] <- theta_start

# proceed with algorithm

for (s in 2:S) {
# extract current location
current <- samples[s - 1, 1

# generate symmetric random-walk proposal
proposed_move <- runif(k, -tau, tau)
proposal <- current + proposed_move

# acceptance step; equivalent to ratio on original scale
delta <- logf(proposal, ...) — logf(current, ...)
if (delta > 0) {
accept <— TRUE
} else {
accept <— (log(runif(1)) <= delta)
+

# update samples
if (accept) {

samples[s, ] <- proposal
} else {

samples[s, ] <- current
}
}

# return
samples

}
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https://gist.github.com/carlislerainey/37521a4fed2ca7d3c74b6408c35ccf24



https://gist.github.com/carlislerainey/37521a4fed2ca7d3c74b6408c35ccf24

glm(formula = £,

(Intercept)
rs(age)

rs (educate)
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racewhite

Example

Logistic Regression

coef.est coef.se

O K~k O K

n = 2000, k

residual deviance
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2024.0,

family = binomial, data =

null deviance

turnout)

2266.7 (difference

242.8)



https://gist.github.com/carlislerainey/3147faeecf88fa92a897cf4a8flec3e2



https://gist.github.com/carlislerainey/3147faeecf88fa92a897cf4a8f1ec3e2

MCMC

MCMC offers a powerful and general way to sample from an unnormalized (log-)posterior.
The Metropolis algorithm is one such method.

Hamiltonian Monte Carlo (HMC) via Stan is even better.

R-hat and burn-in

The first MCMC samples highly dependent on the starting values.
Because of this, you need to:

1. Discard the samples from a burn-in period.

2. Run multiple chains and check that R-hat is less than 1.01.

ESS and large samples

The MCMC samples are dependent on the previous samples.

Because of this, you need to:

1. Generate more samples that you would need if they were independent.

2. Use ESS to understand your effective sample size.



Why the Metropolis Algorithm Works

Symmetric proposals give equal opportunity.
e From any point x, the chance of proposing z is the same as proposing x from z.
o The proposal distribution itself doesn’t favor any direction.

Asymmetric acceptance adds the right bias.

e Moves to higher density are always accepted.

e Moves to lower density are accepted with probability f(z)/f(x).
o This rule makes the chain linger in high-density regions.

Balanced flows keep the target intact.

o Although proposals are symmetric, the acceptance rule ensures that
the expected number of transitions A > B equals those from B > A.

o This condition guarantees that the samples are stationary.

Long-run behavior reflects probability mass.

e Because the chain moves through the space according to these balanced transition
rules, it spends time in each region in proportion to its probability under the target.

e Inthelongrun,the sample frequencies mirror the target distribution.






Stan offers and extremely efficient alternative
to Metropolis and other MCMC algorithmes.

It uses a hyper-optimized version of
Hamiltonian Monte Carlo.

Stan and it’s universe of supporting software is
extremely and



* data {
int<lower=0> N;
int<lower=1> K;
array[N] int<lower=0, upper=1l> y;
matrix[N, K] X;

}

~ parameters {
vector[K] beta;

11 ~ model {

12 beta ~ normal(@, 5); // weakly informative prior

13 y ~ bernoulli_logit(X * beta); // logistic regression likelihood
14~ }

15

16




https://gist.github.com/carlislerainey/3£f59c3eb5cadfd35fa064083b92d7dab



https://gist.github.com/carlislerainey/3f59c3eb5cadfd35fa064083b92d7dab




High-level interface to Stan

{brms} lets you specify Bayesian models using R’s familiar formula syntaxy ~
x1 + x2,then translates them automatically into efficient Stan code for

sampling.

This is worth emphasizing—{brms} writes efficient Stan code.

Broad model support

It can fit all kinds of models.

Much more general than any particular fitting function we’ve seen so far.
Seamless post-processing and visualization

Built-in tools integrate with {bayesplot}, {posterior}, and {tidybayes} to
summarize, diagnose, and visualize posterior draws without writing any Stan

code directly.

Also {marginaleffects}!



https://gist.github.com/carlislerainey/a0b5cb6e92ded08d6£f70bfc426e6610f



https://gist.github.com/carlislerainey/a0b5cb6e92ded08d6f70bfc426e6610f

Why MCMCQC?



Exam



exit
ticket

List three important ideas from today’s
class. For each, briefly connect it to one
or more ideas from last week.



