lecture 04

adding covariates to our models; logit, Poisson, negative binomial; quantities of interest



Paper and Workshop



eview

an example exam question




Show that the scalar representation

w; = Bo + B1xi1 + -+ + BrTik

is equivalent to the matrix representation u; = X;0.

Further, show that stacking the uq, to, ..., uxy into a col-
umn vector u is equivalent to u = X .

Define maximum likelihood estimate, (observed) Fisher in-
formation, invariance property, and delta method. Explain
how we use each and how they all fit together into a work-
How.



Rows: 487

Columns: 8

$ country <chr> "Argentina", "Argentina", "Argentina", "Argentina", "
$ year <dbl> 1946, 1951, 1954, 1958, 1960, 1963, 1965, 1973, 1983...
$ average_magnitude <dbl-> 10.53, 10.53, 4.56, 8.13, 4.17, 8.35, 4.17, 10.13, 10..
$ eneg <dbl> 1.342102, 1.342102, 1.342102, 1.342102, 1.342102, 1.3..
$ enep <dbl> 5.750, 1.970, 1.930, 2.885, 5.485, 5.980, 5.155, 3.19.
$ upper_tier <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @, O,..
$ en_pres <dbl> 2.09, 1.96, 1.96, 2.65, 2.65, 3.90, 3.90, 2.66, 2.30,..
$ proximity <dbl> 1.00, 1.00, 0.20, 1.00, 0.20, 1.00, 0.33, 1.00, 1.00,..

Suppose | have the data set above loaded into R. What formula do |
need to replicate Clark and Golder’s model specification below?

369

Table 2
The Strategic Modifying Effect of Electoral Laws

Dependeat Variablke: Effective Number of Electoral Parties

Cross-Sectionzl Analysis

Pooled Analysis

19808 19808 19905 1946 to 2000

Amorim Amorim 19908 Established 1946 to 2000 Established
Regressor Neto & Cox Daa™ Neto&k Cok Dat® Whoe Sample Democracies’ Whol: Sample Democracies’
Ethnic -0.05 (0.28) 006 (037) <070 (0.63) 019 (013)] Q1] 0.14)
Ir{Magnitede) 008 .37y  0.21 (044) 0ol (0.59) 033" (V20| O 0.23)
UppertierSeals 0.04** (01 007 0.03) 0.01 002y 002 (0.06) 0.05%** (0.02) | <.O6* | [0.03)
PresidentCandidates 022 027) 036 (026 007 (022) 0.35** (0.16)| 026* |0.15)
Proximity ~-6.05*** (0.88) -588"** (D.84) -4.19%** (1261 -495*** (1.24) -3.42'** (0.55)| =3.1C*** | 046)
Ethnic x In(Magnitade) 0.39*** (0.07) 037" (02) -0.9 (017 063* (034) 008 (012 026 (0.17)
Ethnic < UpperterSeas 007*** (0.0O2) -0.005 (©OI' 001 (0.04) -0.02%* (00D | QOE*** | [0.02)
PresidentCandidates x Proximity 2.00%** (0.26) 1.84%*% (D43) 0.60%¢ (046) 142%%= (0.43) 030%%* (0.23) | 0.68%%F | 023)
Constant 2A0%** (0.21) 260%** (DS1) A(8*** (095)  S15%*** (1.32) 2.814%* (034) | 202%** | [0.35)
Observaticns ) | 51 €2 30 555 487
R 71 77 29 A8 30 AC

Note: Standard crrors are given in parentheses for cross-sectional models; robust sandard emrors clustered by country are used for the pooled models

a. See Amorim New and Cox (1997).
b. Eqablisaed Democracies omits elections from countries that trarsitoned 10 democracy after 1989.
p <10 *Tp< 1> **p< DI




a Bernoulll moael
with covariates




y; ~ Bernoulli(m)

But what if we want x to depend
on some explanatory variables?

The Probability of Voting by Age



We want something [ike:

T, — 50 51%1 5k$ik

[f we did this, how would it work?



Linear Probability Model



easy to estimate
X' X)Xy

easy to interpret




Sut there are
disadvantages.




Probability of Voting

The Probability of Voting by Age, Income, and Race
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Droblem 1
probabilities are not bounded
between 0 and 1.

Note: Let’s not overstate how problematic this problem is.



If y; is binary, then Var(y;) = Pr(y;)|1 — Pr(y;)|, which, for
the LPM, equals X;5(1 — X;0).

Droblem 2:
non-constant variance

Note: Again, let’s not overstate how problematic this problem is.



If y; is binary, then the residual can take on only
two values: —Pr(y;) or 1 — Pr(y;).

Droblem 3:
non-normal errors

Note: Again, let’s not overstate how problematic this problem is.



You expect smaller effects as the probability of
an event approaches zero or one.

Droblem 4
(non)compression

IMO, this is the most important problem.



Probability of Voting

The Probability of Voting by Age, Income, and Race
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How can we include covariates, but

keep the 7w between zero and one?



The Inverse Logit Functin
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< unbounded linear predictor >
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1 't— 1 This is the CDF of the logistic
Ogl L distribution, which isplogis () inR.
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y; ~ Bernoulli(m;),

where m; = logit™" (X, )



# data
devtools::install_github("jrnold/ZeligData")
turnout <- ZeligData::turnout

> as_tibble(turnout)
# A tibble: 2,000 x 5

race age educate income vote
<fct> <int> <dbl> <dbl> <int>
white 60 14 3.35 1
white 51 10 1.86 @
white 24 12 0.630 )
white 38 8 3.42 1
white 25 12 2.79 1
white 67 12 2.39 1
white 40 12 4.29 ]
white 56 10 9.32 1
white 32 12 3.88 1
white 75 16 2.70 1

# i 1,990 more rows

# i Use print(n = ...) to see more rows



# formula
f <- vote ~ age + educate

# make X and vy

mf <— model.frame(f, data
X <— model.matrix(f, data
y <— model.response(mf)

> head(X)

(Intercept) age educate income racewhite
1 1 60 14 3.3458 1
2 1 51 10 1.8561 1
3 1 24 12 @.0304 1
4 1 38 8 3.4183 1
5 1 25 12 2.7852 1
6 1 67 12 2.3866 1

—

-+

income + race

turnout)
mTt)

> head(y)
123456
100111




# log—-likelihood function

logit_11 <- function(beta, y, X) {
linpred <—- X%x%beta # perhaps denoted eta
p <- plogis(linpred) # pi is special in R, so I use p
11 <- sum(dbinom(y, size = 1, prob = p, log = TRUE))
return(1l)

}



# use optim
par_start <- rep(@, ncol(X))
opt <- optim(par_start,
fn = logit_L1L,
Y =Y,
X = X, # -» covariates! #
method = "BFGS",
hessian TRUE,
control = list(fnscale = -1))



# function to fit model
est_logit <- function(f, data) {

# make X and y

mf <— model.frame(f, data
X <— model.matrix(f, data
y <— model.response(mf)

data)
mf)

# create starting values
par_start <- rep(@, ncol(X))

# run optim()
est <- optim(par_start,
fn = logit_11,

Y =Y,

X = X,

hessian = TRUE,

control = list(fnscale = -1),

method = "BFGS")

# check convergence; print warning if not
if (est$convergence !'= 0) print('"Model did not converge!')

# create list of objects to return
res <— list(beta_hat = est$par,
var_hat = solve(-est$hessian))

# return the 1list
return(res)
}



# fit model

fit <- est_logit(f, data = turnout)

print(fit, digits = 2)

> # fi1t model

> fit <- est_logit(f, data = turnout)

> print(fit, digits = 2)
$beta_hat
[1] -3.037 0.028 0@.176 0.177

$var_hat

[,1] [,2] [,3]
[1,] 0.10622 -8.2e-04 -5.1e-03
[2,] -0.00082 1.2e-@5 2.9e-05
[3,] -0.00514 2.9e-05 4.l1e-04
[4,] -0.00042 7.3e-06 -1.06e-04
[5,] -90.01016 -5.5e-05 -3.2e-04

0.251

[,4] [,5]

-4 .2e-04 -1.0e-02

7.3e-006 -5.5e-05

-1.6e-04 -3.2e-04

7.4e-04 -4.9e-04

-4.9e-04 2.1e-02



alternatively

# data > # fit model
devtools::install github("jrnold/ZeligData") > fit <- est_logit(f, data = turnout)
turnout <- ZeligData::turnout ;f?“?{“%‘“m¢5=2)

eta_na

[1] -3.037 0.028 0.176 0.177 0.251

# formula

f <- vote ~ age + educate + income + race $var_hat
[,1] [,2] [,3] [,4] [,5]
} £fit model [1,] 0.10622 -8.2e-@4 -5.1e-03 -4.2e-04 -1.0e-02
fit <- glm(f, data = turnout, family = binomial) [2,] -0.00082 1.2e-@5 2.9e-05 7.3e-06 -5.5e-05
[3,] -0.00514 2.9e-05 4.l1e-04 -1.Ge-04 -3.2e-04
0o . [4,] -0.00042 7.3e-06 -1.6e-04 7.4e-04 -4.9e-04
# coefficient estimates [5,] -0.01016 -5.5e-05 -3.2e-04 -4.9e-04 2.1le-02

coef (fit)

### (Intercept) age educate income racewhite
### -3.03426101 0.02835433 0.17563360 0.17711176 0.25079764

# variance estimates

vecov (fit)

i # (Intercept) age educate income racewhite
### (Intercept) 0.1062494162 -8.242756e-04 -5.146302e-03 -4.236393e-04 -1.015639e-02
t## age -0.0008242756 1.197588e-05 2.907509e-05 7.289931e-06 -5.494225e-05
### educate -0.0051463023 2.907509e-05 4.134177e-04 -1.583055e-04 -3.219270e-04
### income -0.0004236393 7.289931e-06 -1.583055e-04 7.375674e-04 -4.896729e-04

### racewhite -0.0101563932 -5.494225e-05 -3.219270e-04 -4.896729e-04 2.145222e-02



difference




Illustrative Logit Model (Without Product Term)
From Berry, DeMeritt, and Esarey (2010)

Sloo ‘---‘__,.--"—..—--l_--_---:-_:-_:'_:'_.'-_.'-_'-
a oPrly) | et -
= 0.069 ——————>.@" _ -
aXl “" ,/

Model: z; = logit™!(—=4 + x; + x,)



Recall that m; = logit_l(XZ- B). To keep this derivative simple, we denote 7; = X; 8 and break it into

o o o Om On
three parts: (i) find (977;’ (ii) find 8;1’ and (iii) use the chain rule 3;1 = (977; : (95:77@'1.
871'2'
Step 1:
P on;
6771'
T = . definition of inverse logit
1+ em
i 1 Ni) el — " i . )
om = (Ltem)e i quotient rule Exercise 8 Inverse Logit
on; (14 em)?
ol ol Define p(0) = l_i + for # € R. Find p’(0) and p”(0).
e’
=Trem ( 1T 6771_) factor out 117
=7; (1 —m;) substitute m; = 1jineim
on;
Step 2:
°P 8[5‘2’1
a’r’z . ’ ’ ’ ’
S = 1 since mi = > 28 (wswal linear regression derivative)
J
Step 3: Chain rule
g~ om m, (putting the two above together)
= 7Tz(1 — 7T7;) 61

— [logit ™' (X;8)] - [1 — logit " (X;8)] - 51

The marginal effect of x;; on the probability of an event is not constant. It depends on the value
of ;1 and all the other x’s.



The marginal effect of a variable on the probability of
an event is not constant. It depends on the value of
that variable and the values of all the other variables.

\ |

like a polynomial ke an interaction
in linear regression in linear regression



Tani 2.

Models of Involvement in Militarized Disputes, 1950-19385:
Assessing the Liberal Peace

Varialfe

Democracy score

Economic growth rate;

Allies
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Capability ratio
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Tota' rade-1o-GDP ratio
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0.083
<001

1.39
D08

<001

-0.00279
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quantities of interest




Making the Most of Statistical Analyses:
Improving Interpretation and Presentation

Gary King Harvard University

Michael Tomz Harvard University
Jason Wittenberg Harvard University

Social scientists rarely take full advan-
tage of the information availatle in
their statstical results. As a conse-
quence, they miss opportunties to
oresen: quantities that are of greatest
substantve interest for their research
ana express the appropriate degree
of certainty about these quantitias. In
this article, we cffer an approech, built
on the technigque of slatistical simula-
tion, to extract the currently over-
ooked irformation from any statistical
method and to interpret and presert it
n a reader-friendly manner sing this
technicue requires some expertise,
wnich we try to provide herein, but its
applicetion should make the results cf
gquantitative articles more informative
anc transparent. To il ustrate cur rec-
ommendatione, we replicate the ra-
sults of severzl published works,

showing in each case how the au-

e show that social scientists often do not take tull advantage of

the information available in their statistical results and thus

miss opportunilies Lo present quantities that could shed the
greatest light on their research questions. In this article we suggest an ap-
proach, built on the technique of statistical simulation, to extract the cur-
rently overlooked information and present it in a reader-friendly manner.
More specifically, we show how to convert the raw results of any statistical
procedure into expressions that (1) convey numerically precise estimates of
the quantities of greatest substantive interest, (2) include reasonable mea-
sures of uncertainly about those estimales, and (3) require litde specialized
knowledge to understand.

The following simple statement satisfies our criteria: “Other things be-
ing equal, an additional year of education would increase your annual in-
come by $1,500 on average, plus or minus about $500.” Any smart high
school student would understand that sentence, no matter how sophisti-
cated the statistical model and powerful the computers used to produce it.
The sentence is substantively informative because it conveys a key quantity
of interest in terms the reader wants to know. At the same time, the sen-
tence indicates how uncertain the researcher is about the estimated quan
tity of interest. Inferences are never certain, so any honest presentation of
statistical results must include some qualifier, such as“plus or minus $500”
in the present example.




Model 1 Model2 Model 3 Model 4 MoedelS Model 6

Intercept -2.67"
(0.66)

Districr Competiriveness 3.69"
(0.78)

PR 0.13*
(1.01)

District Competitiveness x PR~ —2.347
(1.24)

ENCP

PR x ENEP

Age

Male

Education

Married

Union Member

Houschold Income

Close To Party

Number of Respondents 7652
Number of Districts 614
Number of Elections 5
AlC 8308
BIC 8364

Standard errors in parentheses
* inchcares significance at p < (.05

-291°
(0.69)
3.45°
(0.80)
-0.06
(1.04)
~2.20°
(1.25)
0.14*
(0.08)

7651
613

8307
B369

-3.02°
(0.72)
3.32°
(8.1)
0.43
(1.41)
-1.98
(1.26)
0.21°
(0.10)
-0.19
(0.16)

7651
613

8308
8377

-4.73"
(0.65)
1.07"
(0.94)
0.85
(0.95)
~2.91"
(1.39)

0.01"
(>0.01)
0.07
(0.07)
0.16"
(0.02)
0.02
(0.08)
0.2¢4"
(0.08)
0.10°
(0.03)
0.83"
(0.07)
5219
569

5529
S627

—4,73*
(0.67)
4.07"
(0.96)
0.85
(0.9¢)
—2.91°
(1.40)
> 0.01
(0.09)

0.01°
(> 0.01)
0.07
(0.07)
0.167
(0.02)
0.02
(0.08)
0.24°
(0.08)
0.10°
(0.03)
0.43°
(0.07)
5218
568
5
5531
3636

-4.86"
(0.69)
3.03"
(0.96)
1.20*
(1.05)
—-2.717
(1.40)
0.08
(0.12)
-0.15
(0.18)
0.01"
(> 0.01)
0.07
(0.07)
0.167
(0.02)
0.02
(0.08)
0.24*
(0.08)
0.10*
(0.03)
0.43*
(0.07)
5218
568
5
5532
5644

Trzie 2: A Lable showing a series of hierarchical models that demostrate the robustness of the conclu-
sions to changes in mode! specification. Nctice especially that the substantive results do not change
with the inclusion of the effective number of parties.
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Interaction Hypothesis.




We can be very creative with
quantities of interest.

Any 7(6) works!

But we usually want the
expected value and first difference.
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same metric as the dependent variable, so it should re-
quire little specialized knowledge to understand.

Expected Values

Depending on the issue being studied, the expected or
mean value of the dependent variable may be more inter-
esting than a predicted value. The difference is subtle but
important. A predicted value contains both fundamental

E(y | X,) = z = logit™ (X.p)



# create chosen values for X

# note 1: naming columns helps a bit later

# note 2: can also do with f, model.matrix(..., newdata = ...)
X_c <— cbind(

"‘constant" = 1, # intercept
""age" = median(turnout$age),
"educate" = median(turnout$educate),
"income" = median(turnout$income),
"white" = 1 # white indicators =1
)
> head(X)
(Intercept) age educate income racewhite
1 1 60 14 3.3458 1
Vi 1 51 10 1.8561 1
3 1 24 12 0.6304 1 Warning: The way I'm doing this,
4 1 38 § 3.4183 1 Risn’t helping use make sure
° Lo 12 2.785¢ . these match up. See note 2
© 1 67 12 2.3866 1 ' ‘
> head(X_c)
constant age educate income white
[1,] 1 42 12 3.3508 1



# function to compute g1

ev_fn <- function(beta, X) {
plogis (X%*x%beta)

}

# 1nvarilance property
ev hat <- ev fn(fit$beta hat, X c)

> ev_hat

[,1]
[1,] 0.7517864

—



# delta method
library(numDeriv) # for grad()
grad <— grad(

func = ev_Tn, # what function are we taking the derivative of?
x = fit$beta_hat, # what variable(s) are we taking the derivative w.r.t.?
X = X_c) # what other values are needed?

se_ev_hat <- sqrt(grad %x% fit$var_hat %*x% grad)

> se_ev_hat

[,1]
[1,] 0.0114178




# ———— compute the ev given X_c (w/ range of values) ——-

# create chosen values for X
X_¢c <— cbind(

"constant”™ = 1, # intercept

"age" = min(turnout$age) :max(turnout$age),
"educate" = median(turnout$educate),

"income" = median(turnout$income),

"white" = 1 # white indicators =1

)

# contalners for estimated quantities of interest and ses
ev_hat <- numeric(nrow(X_c))
se_ev_hat <- numeric(nrow(X c))

# loop over each row of X_c and compute qi and se
for (i in 1:nrow(X_c)) { # for the ith row of X...
# 1nvariance property
ev_hat[i] <- ev_fn(fit$beta _hat, X cli, 1)
# delta method
grad <— grad(
func = ev_1Tn,
x = fit$beta hat,
X = X_cli, 1)
se_ev_hat[i] <- sqrt(grad %x% fit$var_hat %x% grad)



# put X _c, g1 estimates, and se estimates 1n data frame
qi <- cbind(X_c, ev_hat, se_ev_hat) |>

data.frame() |>

glimpse()

> # put X_c, q1 estimates, and se estimates in data frame

> i <- cbind(X_c, ev_hat, se_ev_hat) |>

+ data.frame() |>

+ glimpse()

Rows: 79

Columns: 7

$ constant <dbi>1,1,1,1,1,1,1,1,1,1,1,1,1.1,1,1.1,1,1,1,1,1, 1,1, 1.1, 1.
$ age <dbl> 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 3b,..
$ educate <dbl> 12, 12, 12, 12, 12, 12, 12. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,..
$ income <dbl> 3.3508, 3.3508, 3.3508, 3.3508, 3.3508, 3.3508, 3.3508, 3.3508, 3.3508, 3.3508,..
$ white «gbi>1,1.1,1,1,1,1,1,1,1,1,1,1.1,1,1,1,1,1,1,1,1, 1,1, 1, 1, 1.
$ ev_hat <adbi> ©.5983202, 0.6051232, @.6118858, 0.6186055, 0.6252802, @.6319075, 0.6384855, 0...
$ se_ev_hat <dbl> 0.02562903, 0.02480870, ©.02399725, 0.02319621., 0.02240713, 0.02163161, 0.02087..



ev hat

09-

08

06G-

# plot
ggplot(gi, aes(x = age, y = ev_hat,
= ev_hat - 1.64xse_ev_hat,

ev_hat + 1.64%se_ev _hat)) +

ymin
ymax

geom_ribbon() +

geom_Tline()

age

Compare to this one from before.

~ 10

N}
=

o

Illustrative Logit Model (Without Product Term)
From Berry, DeMeritt, and Esarey (2010)




gorithm, since steps 1-3 sutfice to simulate one expected
value. This shortcut is appropriate for the linear-normal
and logit models in Equations 2 and 3.

First Differences

A first difference is the difference between two expected,
rather than predicted, values. To simulate a first differ-

ence, researchers need only run steps 2-5 of the expected
value algorithm twice, using different settings for the ex-
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# ———— compute first difference ——-

# make X_lo

X_1lo <- cbind(
"constant"™ = 1, # intercept
"age" =
"educate" = median(turnout$educate),
"income" = median(turnout$income),
"white" = 1 # white indicators =1

)

# make X_hi by modifying the relevant value of X_1lo

X_hi <- X_1lo

quantile(turnout$age, probs = 0.25), # 31 years old; 25th percentile

X_hi[, "age"] <- quantile(turnout$age, probs = 0.75) # 59 years old; 75th percentile

# function to compute first difference
fd_fn <- function(beta, hi, 1lo) {
plogis(hi%x%beta) - plogis(lo%x%beta)

}

# invariance property
fd_hat <- fd_fn(fit$beta_hat, X _hi, X _1lo)

# delta method
grad <— grad(

func = fd_fn,

x = fit$beta_hat,
hi = X_hi,

lo = X_1o)

se_fd_hat <- sqrt(grad %x% fit$var_hat %% grad)

# estimated fd
fd_hat

# estimated se
se_fd_hat

# 90% ci
fd _hat - 1.64xse_fd _hat # Llower
fd_hat + 1.64xse_fd_hat # upper

> # estimated fd

> fd_hat
[,1]

25% 0.1416257

> # estimated se

> se_fd_hat

[,1]

[1,] 0.0170934

> # 90% ci

> fd_hat - 1.64*se_fd_hat # lower
[,1]

25% 0.1135925

> fd_hat + 1.64*se_fd_hat # upper
[,1]

25% 0.1696588

-



Your Turn!

https://gist.github.com/carlislerainey/

7798659a9d5d8decb87352068a2d1655



https://gist.github.com/carlislerainey/7798659a9d5d8decb87352068a2d1655
https://gist.github.com/carlislerainey/7798659a9d5d8decb87352068a2d1655

models, generally



. Choose a distribution.

. Choose the parameters to model
as functions of covariates and
those to model as fixed.

. Choose aninverse link function.
. Fitthe model.

. Compute Qls.



models for counts




The Distributive Politics of Enforcement

Alisha C. Holland

Harvard University

Why do some politicians tolerate the violation of the law? In contexts where the poor are the primary violators of property
laws, I argue that the answer lies in the electoral costs of enforcement: Enforcement can decrease support from poor
voters even while it generates support among nonpoor voters. Using an original data set on unlicensed street vending and
enforcement operations at the subcity district level in three Latin American capital cities, I show that the combination of
voter demographics and electoral rules explains enforcement. Supported by qualitative interviews, these findings suggest
how the intentional nonenforcement of law, or forbearance, can be an electoral strategy. Dominant theories based on state

capacity poorly explain the results.

n much of the developing world, a source of resources

for the poor is the ability to violate property laws

without state sanction. Squatters gain rent-free hous-
ing if their takings succeed. Street vendors secure a way
to earn a living when the government ignores their unli-
censed stands. The idea that enforcement has distributive
consequences is not new. Yet conventional wisdom is that
limited enforcement reflects a weak state unable to imple-
ment its laws due to budget constraints or principal-agent
problems.

In contrast, this article argues that nonenforcement
of law is often intentional—what I call forbearance—and
explains why some governments tolerate violations of the
law bv the poor and others do not. The areument is sim-

An intuitive distributive logic thus provides greater lever-
age to understand enforcement (and its absence) than
dominant capacity-based approaches.

Focusing on variation in enforcement against unli-
censed street vendors at the city and subcity level, this ar-
ticle tests this electoral theory in two ways. I first examine
time-series data on enforcement in a city that constitutes
a single electoral district, Bogota, Colombia. I show that
city mayors with nonpoor core constituencies conduct
almost five times more enforcement operations against
street vendors than those with poor constituencies. Sec-
ond, I collect original data on enforcement operations
and unlicensed street vending in a sample of 89 subcity
units. or districts. in three cities. I select cities that varv in




My first hypothesis is that enforcement operations
drop off with the fraction of poor residentsin an electoral
district. So district poverty should be a negative and sig-
nificant predictor of enforcement, but only in politically
decentralized cities. Poverty should have no relationship
with enforcementin politically centralized cities once one
controls for the number of vendors.

TaBLE 1 Theoretical Hypotheses and Empirical Predictions

Hypothesis Empirical Prediction

Hypothesis 1: Enlorcement decreases with the poverly Biowsr <= 0y B crdis|lowe- == 0 in Lima and Santiago
of an electoral district. Be-rders = 01n Bogota




> # data; see ?crdata::holland2015

> holland <- crdata::holland2015 |>

+ filter(city == "santiago")

> glimpseCholland)

Rows: 34

Columns: 7

$ city <chr> "santiago", "santiago", "santiago", "santiago", "santiago", "santiago", "santi..
$ district  <chr> "Cerrillos", "Cerro Navia", "Conchali", "El Bosque", "Estacion Central"”, "Huec..
$ operations <dbi> 0, 9, 0, @, 12, 0, 0, 0, 1, 1, 0, 10, 1, 5, 0, 0, 0, 4, 4, 0, 1, 16, 1, 1, O, ..
$ lower <dbl> 52.2, 69.8, 54.8, 58.4, 43.6, 58.3, 41.0, 38.3, 36.7, 60.1, 73.8, 16.4, 7.7, 2.
$ vendors <dbl> ©.50, 0.60, 5.00, 1.20, 1.00, 0.30, 0.05, 1.25, 2.21, 0.70, 1.00, 0.50, 0.05, ..
$ budget <dbl> 337.24, 188.87, 210.71, 153.76, 264.43, 430.42, 312.75, 255.53, 149.48, 164.98..
$ population <dbl> 6.6160, 13.3943, 10.7246, 16.8302, 11.1702, 8.5761, 5.1277, 7.1443, 39.8355, 1.

R —
Note: Santiago is “highly decentralized.”




Number of Observations

15
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Histogram of Holland's (2015) 'operations' Variable
Santiago Only
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Poisson Regression

Element Details
Outcome Count (non-negative integers).
Model y; ~ Poisson()\;), with \; = exp(X;3). Note: Var(y;) = \;.

Expected value
First difference

Function

Parameterization
notes

Alternatives

A = exp(X.f).
A = Ani — Mo = exp(Xnif) — exp(Xio ).

glm() with family = poisson for fitting models; dpois() for
probabilities.

None.

Negative binomial regression (relaxes variance = mean), zero-
inflated variants.




How would our logit code change?


https://www.diffchecker.com/u0EHewB1/

Negative Binomial Regression

Element Detalils
Outcome Count (non-negative integers).
Model y; ~ NegBin(us,0), with u;, = exp(X;8). Note: Var(y;) =

Expected value
First difference
Function

Parameterization
notes

Alternatives

pi + 117 /0.
fo = exp(X.f3).

A

A = fini — fuio = exp(Xni3) — exp(X103).
MASS::glm.nb() for fitting models; dnbinom() for densities.

Uses the mean—dispersion form where regression is parameter-
ized by the mean u; with a exp inverse link. The dispersion pa-
rameter 6 (size in R) controls overdispersion, where Var(y;) =
t; + p/0. In dnbinom() you can use either (size,prob) or
(size, u); glm.nb() uses (uq,H).

Poisson regression (variance equals mean), zero-inflated vari-
ants.




How would our Poisson code change?


https://www.diffchecker.com/67AIcHV3/

exit

ticket

The last three weeks (ML, SE, and X) outline a coherent
and complete toolkit for statistical modeling. What are
the major ideas and how do they fit together?



