lecture 03

sampling distribution; parametric bootstrap; information matrix; delta method; coverage



eview

an example exam question
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11 _fn <- function(theta, y) {
alpha <- thetal[1]
beta <- thetal[2]
11 <- sum(dbeta(y, shapel = alpha, shape?
return(11l)

beta, log = TRUE))

}

est_beta <- function(y) {
est <- optim(par = c(2, 2), fn = 11 _fn, y = vy,

control = list(fnscale = -1),
method = "BFGS") # for >1d problems
if (est$convergence != 0) print("Model did not converge!")

res <- list(est = est$par)
return(res)

¥

fit <- est_betal(y)

1. On line 4, what does 1log = TRUE do?
2. On line 10, what does control = list(fnscale = -1) do?”

3. Describe the function est_beta(), both (i) the arguments it takes and
(ii) the results it returns.
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4. Write R code to compute i = after running the code above.




Suppose we collect N random samples y = {y1,y2, ..., YN }

and model these data with a Poisson distribution with pmf

e A)\Y
flyi; A) = ' L for y; € {0,1,2,...} and A > 0. Find the
y.

ML estimatorr&;)f .

MLE Recipe

write dowwn the Likelithood

Take Log of the Likelihood.

Simplify the log-Likelihood.

Take derivative of the Log-Llikelihooo
Set derivative equal to zero; set T = 7.

Can you sketch the process?

Solve for 7.
(Check second-order conditions.)
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Do you remember the solution? A= avg(y)



sampling distribution




We have an estimator é’

This estimator is a random variable

because @ is a function of y,
which is random in some way.

random sampling randomization probability model



f @is a random variable,
thenithasa

This distribution is called the
sampling distribution.



he sampling distribution
IS the most important
statistical concept (by far).

When you run a study, you get an estimate 0.
The estimate is random—it comes from a noisy procedure.
We must figure out that noise (SE, p-value, Cl).



Example

The Poisson ML Estimate


https://gist.github.com/carlislerainey/ae1e37fe392f69017a4ce5909c4bbd29

three important features
of the sampling distribution

eshmMe

location APPIrox. unbiasec
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spread thisis the question

Mliroe

shape apProx. normal



How do we estimate the spread
of the sampling distribution?









Too Narrow
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Just Right

miss left about 2.5% of the time, miss right about 2.5% of the time
“almost always” catch the wolf




So how wide does our
net need to be?

90% Cl| = estimate + 1.6@

95% Cl = estimate + 1.9@



How do we estimate the spread
of the sampling distribution?



parametric bootstrap

(building our intuition)



Inputs: observed data, a parametric model f(6), an
estlmatorH and perhaps a quantity of interest 7 = 7(6’).

Compute 0 from the observed data.

Do the following 2,000 times:

1. Simulate a new b.s. data set from the fitted
parametric model.

2. Usethe b.s. data set to obtain a b.s. estimate your
quantity of interest. Store the estimate.

Summarize the empirical distribution of the b.s.
estimates. (e.g., SD for SE, quantiles tor Cl)



Example

Toothpaste Cap Problem


https://gist.github.com/carlislerainey/edb70a6f0da2d27f1116cc2b7606330d

But is there a faster way?

(like a closed-torm expression, maybe?)



standard errors

(a shot-in-the-dark guess)



Here are two log-likelihoods. Which produces a more precise estimate?

Data Set #1 Data Set #2
P T '
T -500 E
& -1000
-1500 : :
-1 0 1 2 3 4 -1 0 1 2 3 4
Parameter

These are log-likelihoods from a stylized normal model.
(my term)

The stylized normal has unknown mean i and known SD 6 = 1.



stylized normal distribution

Fyisn) = \/%e}cp(—%(yi — u)?)

(keep going on board; see handout)



standard errors

(for single parameter models)



the inverse of the negative curvature
IS a great estimate of the variance

f”(é)_l



asymptotic results



Definition (Fisher Information). For a model f(y | #) with log-
likelihood £(8) = S°2  log f(y; | 6),

o the expected information is defined as Z(0) = —IEy [823%(29>] and
: . N o 0%4(0)
o the observed information is defined as Zops(0) = — =555~
0=0




Theorem (Asymptotic Normality of ML Estimators) Let
Y1,...,yn be iid from f(y | 6) with true parameter . Assume
the regularity conditions for consistency hold and that the Fisher
information Z(6) is finite and positive. Then the MLE 6 is asymp-
totically normal so that

0 ~ N6, Z(6)™).






Theorem (Asymptotic Variance of ML Estimators). Under the condi-
tions of the asymptotic normality theorem, the variance of the MLE satisfies

Var(9) =~ Z(6)~ .

In practice, replace the unknown 6 with 9 and use the observed information:

—1

} = |-"(0) o

520(6)
00?

Var(0) ~ {—

0=0



Example

Toothpaste Cap Problem

(on board; see handout)



delta method



- N2
In the one-parameter case, Var|r(0)] ~ (7" (9)) -



Example

Toothpaste Cap Problem

(on board; see handout)



standard errors

(for multi-parameter models)



replace the scalars with their
matrix equivalents

d*¢(0
d6’(2 ) becomes VZ£(0)

Var[#(0)] ~ <T'(é)>2- Var (0)

becomes @(T(é’)) ~ VT(é)T : @(é) : Vf(é)



Example

Normal Model of NOMINATE w/ optim( )


https://gist.github.com/carlislerainey/60d47883a470687f10d5f632e243ddaf

exit
ticket

What’s one new idea from today that
changed the way you understand
something from before?



