lecture 03

sampling distribution; parametric bootstrap; information matrix; delta method; coverage

an example exam question

```
ll_fn <- function(theta, y) {</pre>
      alpha <- theta[1]
     beta <- theta[2]
      11 <- sum(dbeta(y, shape1 = alpha, shape2 = beta, log = TRUE))</pre>
      return(11)
5
6
   }
   est_beta <- function(y) {</pre>
      est \leftarrow optim(par = c(2, 2), fn = ll_fn, y = y,
9
                    control = list(fnscale = -1),
10
11
                    method = "BFGS") # for >1d problems
12
      if (est$convergence != 0) print("Model did not converge!")
13
      res <- list(est = est$par)
14
      return(res)
15
   }
16
17
   fit <- est_beta(y)</pre>
```

- 1. On line 4, what does log = TRUE do?
- 2. On line 10, what does control = list(fnscale = -1) do?
- 3. Describe the function est_beta(), both (i) the arguments it takes and (ii) the results it returns.
- 4. Write R code to compute $\hat{\mu} = \frac{\hat{\alpha}}{\hat{\alpha} + \hat{\beta}}$ after running the code above.

Suppose we collect N random samples $y = \{y_1, y_2, ..., y_N\}$ and model these data with a Poisson distribution with pmf

$$f(y_i; \lambda) = \frac{e^{-\lambda} \lambda_i^y}{y_i!}$$
 for $y_i \in \{0, 1, 2, ...\}$ and $\lambda > 0$. Find the

ML estimator of λ .

MLE Recipe

1. Write down the likelihood

2. Take log of the likelihood.

3. Simplify the log-likelihood.

4. Take derivative of the log-likelihood

5. Set derivative equal to zero; set $\pi=\hat{\pi}$.

6. Solve for $\hat{\pi}$.

7. (Check second-order conditions.)

Can you sketch the process?

Do you remember the solution?

$$\hat{\lambda} = \operatorname{avg}(y)$$

sampling distribution

We have an estimator $\hat{\theta}$.

This estimator is a random variable

because $\hat{\theta}$ is a function of y, which is random in some way.

If $\hat{\theta}$ is a random variable, then it has a distribution.

This distribution is called the sampling distribution.

The sampling distribution is the most important statistical concept (by far).

When you run a study, you get an estimate $\hat{\theta}$.

The estimate is random—it comes from a noisy procedure.

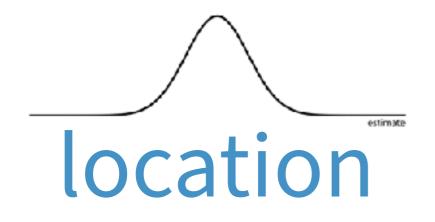
We must figure out that noise (SE, p-value, CI).

ExampleThe Poisson ML Estimate

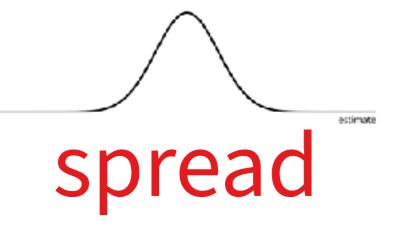
https://gist.github.com/carlislerainey/ae1e37fe392f69017a4ce5909c4bbd29

three important features

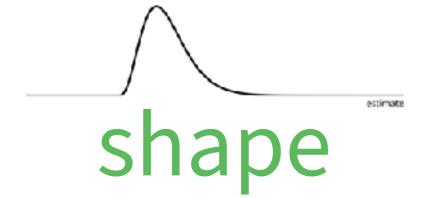
of the sampling distribution



approx. unbiased



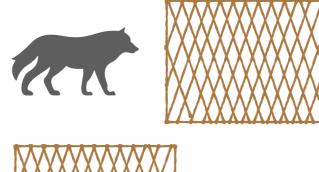
this is the question

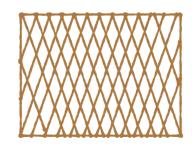


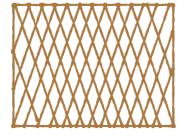
approx. normal

How do we estimate the spread of the sampling distribution?

Too Narrow

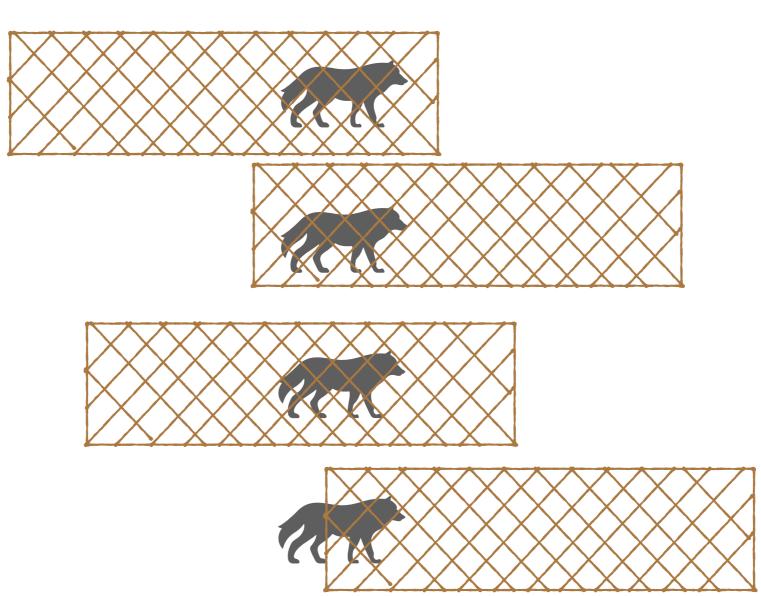






Just Right

miss left about 2.5% of the time, miss right about 2.5% of the time "almost always" catch the wolf



So how wide does our net need to be?

90% CI = estimate ± 1.64 SE

95% CI = estimate ± 1.96 SE

How do we estimate the spread of the sampling distribution?

parametric bootstrap

(building our intuition)

Inputs: observed data, a parametric model $f(\theta)$, an estimator $\hat{\theta}$, and perhaps a quantity of interest $\hat{\tau} = \tau(\hat{\theta})$.

Compute $\hat{\theta}$ from the observed data.

Do the following 2,000 times:

- 1. Simulate a new **b.s. data set** from the fitted parametric model.
- 2. Use the b.s. data set to obtain a **b.s. estimate** your quantity of interest. Store the estimate.

Summarize the empirical distribution of the b.s. estimates. (e.g., SD for SE, quantiles for CI)

ExampleToothpaste Cap Problem

https://gist.github.com/carlislerainey/edb70a6f0da2d27f1116cc2b7606330d

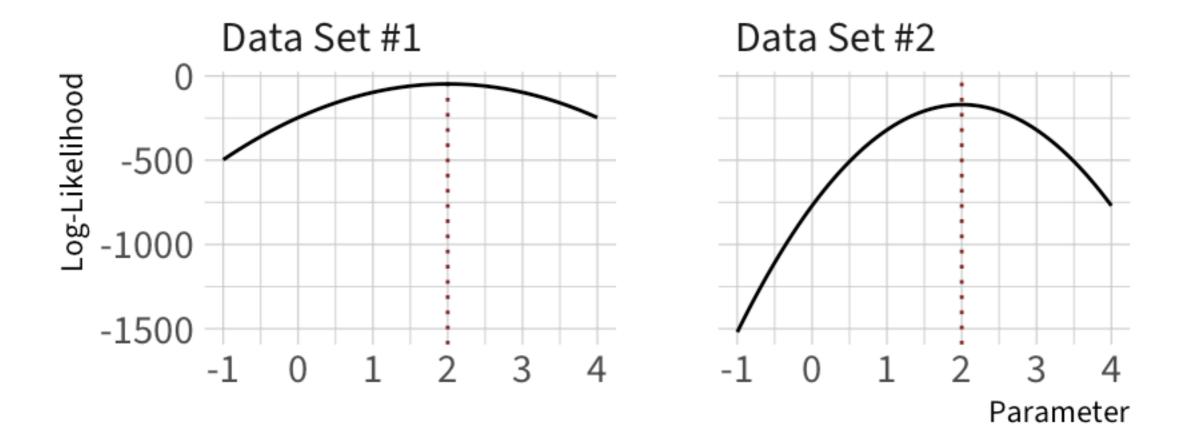
But is there a faster way?

(like a closed-form expression, maybe?)

standard errors

(a shot-in-the-dark guess)

Here are two log-likelihoods. Which produces a more precise estimate?



These are log-likelihoods from a **stylized normal model**. (my term)

The stylized normal has unknown mean μ and known SD $\sigma=1$.

usual normal distribution

$$f(y_i; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)$$

stylized normal distribution

$$f(y_i; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(y_i - \mu)^2\right)$$

(keep going on board; see handout)

standard errors

(for single parameter models)

just a magical result

the inverse of the negative curvature is a great estimate of the variance

(this is for the *log*-likelihood)

$$e^{\prime\prime\prime}(\hat{\theta})^{-1}$$

asymptotic results

Definition (Fisher Information). For a model $f(y \mid \theta)$ with log-likelihood $\ell(\theta) = \sum_{i=1}^{N} \log f(y_i \mid \theta)$,

- the expected information is defined as $\mathcal{I}(\theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^2 \ell(\theta)}{\partial \theta^2} \right]$ and
- the observed information is defined as $\mathcal{I}_{obs}(\hat{\theta}) = -\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\Big|_{\theta=\hat{\theta}}$.

Theorem (Asymptotic Normality of ML Estimators) Let y_1, \ldots, y_N be iid from $f(y \mid \theta)$ with true parameter θ . Assume the regularity conditions for consistency hold and that the Fisher information $\mathcal{I}(\theta)$ is finite and positive. Then the MLE $\hat{\theta}$ is asymptotically normal so that

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, \mathcal{I}(\theta)^{-1}).$$

location $\hat{\theta} \stackrel{a}{\sim} N(\dot{\theta}, I(\theta)^{-1})$ shape

Theorem (Asymptotic Variance of ML Estimators). Under the conditions of the asymptotic normality theorem, the variance of the MLE satisfies

$$\operatorname{Var}(\hat{\theta}) \approx \mathcal{I}(\theta)^{-1}.$$

In practice, replace the unknown θ with $\hat{\theta}$ and use the observed information:

$$\widehat{\operatorname{Var}}(\widehat{\theta}) \approx \left[-\frac{\partial^2 \ell(\theta)}{\partial \theta^2} \Big|_{\theta = \widehat{\theta}} \right]^{-1} = \left[-\ell''(\widehat{\theta}) \right]^{-1}.$$

ExampleToothpaste Cap Problem

(on board; see handout)

delta method

In the one-parameter case, $\widehat{\operatorname{Var}}[\tau(\hat{\theta})] \approx \left(\tau'(\hat{\theta})\right)^2 \cdot \widehat{\operatorname{Var}}(\hat{\theta})$.

ExampleToothpaste Cap Problem

(on board; see handout)

standard errors

(for multi-parameter models)

replace the scalars with their matrix equivalents

$$\frac{d^2\ell(\theta)}{d\theta^2} \text{ becomes } \nabla^2\ell(\theta)$$

(second derivative becomes the Hessian)

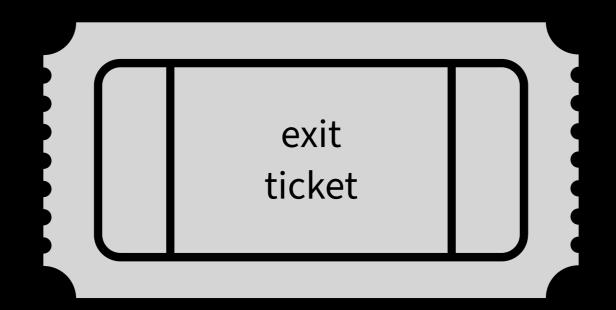
$$\widehat{\mathrm{Var}}[\tau(\hat{\theta})] \approx \left(\tau'(\hat{\theta})\right)^2 \cdot \widehat{\mathrm{Var}}(\hat{\theta})$$
 becomes
$$\widehat{\mathrm{Var}}(\tau(\hat{\theta})) \approx \nabla \tau(\hat{\theta})^{\mathsf{T}} \cdot \widehat{\mathrm{Var}}(\hat{\theta}) \cdot \nabla \tau(\hat{\theta})$$

(derivative becomes gradient; square becomes matrix sandwich analog)

Example

Normal Model of NOMINATE w/optim()

https://gist.github.com/carlislerainey/60d47883a470687f10d5f632e243ddaf



What's one new idea from today that changed the way you understand something from before?