lecture 02

maximum likelihood; invariance principle; predictive distribution



eview

an example exam question




From the homework:

A variant on the exam:

Simplify the following: log (H m¥i(1 — )= y%))

Let £(m) = Slog(m)+(n—S)log(l—m) for 0 < 7w < 1, where
S and n (with 0 < § < n) are fixed numerical constants.

Find (W) and %.

Let £(m)

= log [77
N. Simplity the right-hand side and find

Fl-—mNFfor0<7m<land 0<k<

dl(m )
dm

| would say this question is “medium-easy” (after all, it’s review material).
But it’s somewhat tedious—I'd give you 5 minutes to work through it.



maximum likelihood



Hypothesis 1: Social heterogeneity increases the number of parties, but only when
electoral institutions are sufficiently permissive.’

Effective Number of Electoral Parties

A Simple Scatterplot
It's hard to do a lot better than this.
Single-Member Districts Small-Magnitude PR Large-Magnitude PR

10 1 3 10

Effective Number of Ethnic Groups




example

the toothpaste cap problem
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150 tosses
8 tOPS

How can we estimate the chance of a top?
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A.1 Bernoulli Distribution

Table A.1: Summary of the Bernoulli distribution

Property Description
Name Bernoulli distribution
Notation Bernoulli(r) let’s try this out!
Parameters 0 < < 1: probability of success {((3; : ;
Support r € {0,1}
PMF flz)=n"(1-m' " &
CDF Flz)=0forz < 0; 1 —7mfor0 <z < 1;1forz > 1
Mean s
Variance (1l — )

Special cases Binomial(n = 1, ) is Bernoulli().




A Principled Way

Assume the observed data (i.e., those 0s and 1s)
are draws from a Bernoulli distribution.




This is pretty easy to work out!

Remember, we have
0O 01 0 O..

Pr(y1y =0) x Pr(yo=0) x Pr(y3=1) x Pr(yy=0) x Pr(ys=0) x

fFO) xfO0) xf) ox f(0) x f(0) X
(1—m) x (I1—m) X 7 x (1-m) x (1=m X

The number of 7sis k = Z ;- The numberof (1 — n)isk = N — k.
i=1
each 1 contributes a
7T to the product (e.g9., 8)

the likelihood: L(m .m

each 0 contributes a
(I — 7) to the product (e.g., 142)




There’s a more general way.

f(x) can be
Remember, we have pmf or pdf!

vl yv2 y3 y4 y5.. /
A\ 4

flyr) x fly2) x flyz) x flya) x  f(ys) X

the likelihood: L(7) Bernoulli model...can

use other pmfs or pdfs

m¥i(1 — )ty /

(could simplify as before if we wanted...)
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the likelihood: L(7) = 77"“’(1 — w)(N_k)
Maximize the likelihood w.r.t. 7.

MLE Rzoipe

write dowwn the Likelihood

Take Log of the Likelithood.

Simplify the log-likelihood.

Take derivative of the Log-Llikelihood
Set derivative equal to zero; set T = 7.
Solve for 7.

. (Check second-order conditions.)

Ne 0 r0pH







Maximum Likelihood Estimator. Suppose we have
iid samples x1,xo,...,xny from pdf or pmf f(x;0). Then
the joint density /probability is f(x;0) = Hf\il f(x;;0) and
log L(0) = 27],\;1 log [f(x;;60)]. The ML estimator 6 of 6 is
arg max log L(0).



Consistency. Let On be an estimator of 6 based on a
sample of size N. Say that 0y is a consistent estimator

for 0 if limy_, o Pr (\éN — 0| > 5) = 0 for every € > 0.

Consistency of ML Estimators. Suppose an ML esti-
mator 6 of 8. Under certain reqularity conditions, 6 is a
consistent estimator of 6.



Density

40

20

Sampling Distribution ofEstimate

Sample size: 100

0.00 0.25

0.50

Estimate



Poisson Model



Suppose we collect N random samples y = {y1,¥92,...,yn} and
model each draw as a Poisson random variable. Find the ML esti-

mator of \.

A.4 Poisson Distribution

Property
Name
Notation
Parameters

Support

PMF

CDF

Mean

Variance

Special

cases

Table A.4: Summary of the Poisson distribution
Description
Poisson distribution
Poisson(A)
A > 0:rate [mean number of evenlts per unit interval)

ze{0,12...}

- Limit of Binomial(n,p) asn — oc, p — O withnp — Afixed

Distribution of counts in a homogeneous Poissan process
- Sum of independent Poisson( ;) is Poisson(} A;)

Examples

Number of times legislators
travel to their districts

Number of ISIS violent events

Number of out-of-circuit
judicial citations

®: It’s “nice” for the support
of the model to mateh the
support of the observed
data. But does Lt really
matter? When?



Invariance property



Invariance Property. Suppose an ML estimator 0 of ¢
and a quantity of interest 7 = 7(6) for any function 7. The

ML estimate 7 of 7 = 7(0) is 7(0).

Fxample 1: 7 to odds

Fxample 2: A to SD

SEeems obvious? Among the most

OLS; wo longer unbiased! Lmportant tdeas we see!
postertor mean; no Longer the mean!



optim()



Beta Model



A.2 Beta Distribution

Property
Name
Notation
Parameters
Support

PDF

CDF

Mean

Variance

Special
cases

Table A.2: Summary of the beta distribution

Description
beta distribution
beta(c, 5)

a > 0: shape; B > 0: shape

z € (0,1)
oz (1 - z)P1
9= "5@n
F(z) = I,(e, B), the regularized incomplete beta function
o
a+f
aff
(a+pB)*(a+B+1)

beta(1, 1) is uniform(0, 1).




+log(1 — ;)" " —log B(ar, B)]

4+ (8 —1)log(1 —y;) — log B(c, B)]

+ (8 —1)log(1 — ;)] — nlog B(a, p)

— 1)) log(1 —y;) — nlog B(a, B)
1=1



log L(cv, 3) = (v — 1) Y logy; + (B —1) Y log(1 — y;) — nlog B(a, B)
1=1

1=1

# manually typing log-likelihood
Ll _fn <- function(theta, y) {
alpha <- thetal1l]
beta <— thetal2]
L1 <- alphaxsum(log(y)) + betaxsum(log(l - y)) -
length(y)*log(beta(alpha, beta))
return(11)
s

# using dbeta shortcut (good!)
L1_fn <- function(theta, y) {
alpha <- thetal1]
beta <— thetal2]
L1 <- sum(dbeta(y, shapel = alpha, shape2 = beta, log = TRUE))
return(11)
s



# using dbeta shortcut (good!)
Ll _fn <- function(theta, y) {
alpha <- thetal1l]
beta <- thetal[2]
11 <- sum(dbeta(y, shapel = alpha, shape2 = beta, log = TRUE))
return(11)
s

# use optim()

est <— optim(par = c(2, 2),Lstarting values of parameters ]
fn = 1L_fn, [ function to optimize ]
Y =Y, [datal
control = list(fnscale = -1), [ maximize! ]
method = "Nelder-Mead")



# using dbeta shortcut (good!)
L1_fn <- function(theta, y) {
alpha <- thetal[1]
beta <- thetal2]
11 <- sum(dbeta(y, shapel = alpha, shape2 = beta, log = TRUE))
return(11)
I3

# make function that fits beta model
est _beta_<- function
est <—foptim(par = c(2, 2), fn = 11_fn, y =y,
control = list(fnscale = -1),
method = "BFGS") # for >1d problems
if (est$convergence !'= prin converge!") [ automatically check! T

res <— list(est = est$par) [ retwrn a *list* of results... only ests for now ]
return(res)

}

# fit beta model
ml_est <— est_beta(y) [very compact]
print(ml_est, digits = 3)

same as before!




: : ) :
(Continue in R—there’s a Gist.)
https://gist.github.com/carlislerainey/17f281357ffd91972dce3dc670f35a37


https://gist.github.com/carlislerainey/17f281357ffd91972dce3dc670f35a37

predictive distribution




In my view, the predictive distribution is the best way to (1) understand, (2)
evaluate, and then (3) improve models.

You can use the predictive distribution as follows:
1. Fityour model with maximum likelihood.

2. Simulate a new outcome variable using the estimated model
parameters (i.e., f(y; 8)). Perhaps simulate several for comparison.

3. Compare the simulated outcome variable(s) to the observed
outcome variable. You can use histograms, plots of the ECDF, or
other summaries.



Example: Holland (2015)

number of enforcement operations in a city

Observed data:
7 0 20 1 1 50 3 0 36 32..

Simulated data from Poisson model:
23 25 20 22 19 19 22 8 14 25..



count

observed

allon

simulated #3

20 40

60

simulated #1

simulated #4

20 40
operations

simulated #2

simulated #5




1.00

0.75

8 0.50 observed

@
simulated

0.25

0.00

operations



. . ) .
(Continue in R—there’s a Gist.)
https://gist.github.com/carlislerainey/c3cb055454a076ab49ebcalecabb0cOc



https://gist.github.com/carlislerainey/c3cb055454a076ab49ebca1eca6b0c0c

[ a bit of fun

German Tank Problem



Suppose a discrete uniform distribution from 0 to K. The
pmfis f(x; K) = K—+1’ r €{0,1,...,K}. Suppose I have
a sample of size 3 from the distribution: 276, 159, and 912.

1. Find the ML estimate of K. Hint: The log-likelihood
1s discontinuous, so the usual optimization routine
maight mislead you. But the mazimum is immediately

apparent once you write out the likelthood. A verbal
arqgument is okay, too!

2. Find the method of moments estimate of K. Hint:

The mean of this uniform distribution is 5. Set the
sample mean equal to the model mean (z.e., % —

avg(x)) and solve.

3. Discuss any problems you notice with each estimator.



exit
ticket

List three important ideas from today’s
class. For each, briefly connect it to one
or more ideas from last week.



