
Week 4 Exercises

Note: These exercises are tending toward “tedious” and “rote.” However, I want to make
sure that we understand the implementation of the basic framework, so there’s a lot of tedious
repetition in this homework.

Exercise 1 Berk (2010)

Read Berk (2010, journal).

1. Berk distinguishes Level I (descriptive), Level II (statistical inference), and Level III
(causal inference) regression analyses. Summarize the features of each level in your own
words. Explain why Berk argues that most regressions in criminology are Level I. Does
his claim about criminology apply to political science as well?

2. Select a recent empirical article in your subfield that uses non-experimental (i.e., obser-
vational) data. Identify how the authors use regression. At what level does the authors
claim to operate? Use direct quotes if possible. At what level does the analysis actually
operate? Explain.

3. Berk critiques observational regression treated as causal. He also lists common responses
(e.g., “the assumptions are reasonable,” “we all have models,” “you have to make assump-
tions to make progress”). Pick one response and assess whether you find it persuasive.
Defend your position. How might you design a study in your area that could move from
Level I or II toward Level III without weak rhetorical defenses? Perhaps give an example.

4. Berk concludes that, with rare exceptions, regression analyses of observational data
should be treated as Level I. Do you agree? If you take Berk’s view seriously, what
happens to publication standards, peer review, funding, and training?

No solution intended.

1

Exercise 2 Clark and Golder (2006), normal distribution

Clark and Golder (2006) fit the following regression model (that we’ve seen several times
now).

1. Use an R formula and model.matrix() to create the required design matrix X. Think
carefully about the formula needed.

2. Reproduce their estimates with the matrix multiplication (𝑋⊤𝑋)−1𝑋⊤𝑦 or solve(t(X)
%*% X) %*% t(X) %*% y.

3. Reproduce their estimates using a normal linear model with optim(). You can easily
adapt code like est_logit() from the notes, remembering that you must combine all
parameters (i.e., the vector 𝛽 and scalar 𝜎) into a single vector 𝜃 to give optim(). See
the template below.

normal_ll <- function(par, y, X) {
beta <- par[1:ncol(X)] # pull out the vector of betas
sigma <- par[ncol(X) + 1] # pull out the scalar sigma
... [and so on]

}

The least squares and ML estimates of the coefficients should match; for the normal linear
model, the ML estimate is just the least squares solution.

2

load Clark and Golder's data
cg <- crdata::cg2006 # from my data package

Solution

load data
cg <- crdata::cg2006
glimpse(cg)

Rows: 487
Columns: 8
$ country <chr> "Argentina", "Argentina", "Argentina", "Argentina", ~
$ year <dbl> 1946, 1951, 1954, 1958, 1960, 1963, 1965, 1973, 1983~
$ average_magnitude <dbl> 10.53, 10.53, 4.56, 8.13, 4.17, 8.35, 4.17, 10.13, 1~
$ eneg <dbl> 1.342102, 1.342102, 1.342102, 1.342102, 1.342102, 1.~
$ enep <dbl> 5.750, 1.970, 1.930, 2.885, 5.485, 5.980, 5.155, 3.1~
$ upper_tier <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ en_pres <dbl> 2.09, 1.96, 1.96, 2.65, 2.65, 3.90, 3.90, 2.66, 2.30~
$ proximity <dbl> 1.00, 1.00, 0.20, 1.00, 0.20, 1.00, 0.33, 1.00, 1.00~

create design matrix
f <- enep ~ eneg*log(average_magnitude) + eneg*upper_tier + en_pres*proximity
mf <- model.frame(f, data = cg)
X <- model.matrix(f, data = mf)
y <- model.response(mf)

OLS
solve(t(X) %*% X) %*% t(X) %*% y

[,1]
(Intercept) 2.91570805
eneg 0.11160359
log(average_magnitude) 0.07798753
upper_tier -0.05655491
en_pres 0.26384754
proximity -3.09756561
eneg:log(average_magnitude) 0.26366122
eneg:upper_tier 0.05919037
en_pres:proximity 0.68317107

3

MLE via optim (normal-errors)
normal_ll <- function(theta, y, X){
k <- ncol(X)
beta <- theta[1:k]
sigma <- theta[k+1]
mu <- X%*%beta
sum(dnorm(y, mu, sigma, log = TRUE))

}

use optim()
theta_start <- c(rep(0, ncol(X)), 2)
est <- optim(
par = theta_start,
fn = normal_ll,
y = y,
X = X,
method = "BFGS",
control = list(fnscale = -1)

)

Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced
Warning in dnorm(y, mu, sigma, log = TRUE): NaNs produced

est$par # matches ols from above

[1] 2.91570243 0.11161188 0.07798356 -0.05655386 0.26384097 -3.09755108
[7] 0.26366069 0.05918970 0.68317320 1.31999212

4

Exercise 3 Long (1997) or King (1998)

Read either King (1998) pp. 97-115 (section 5 through 5.3) OR Long (1997) pp. 34-84 (chapter
3). Write a short comparison to our notes on the logit model. Highlight the differences you
find most interesting or important.

Readings are here.

Hint: You might notice differences in their (i) notation, (ii) justifications for the link function,
(iii) recommended quantities of interest, or (iv) treatment of the LPM (foil vs. viable approx-
imation). Pick a couple of these contrasts (or others you discover). Explain each clearly in
your own terms. Keep it concise and focused; perhaps 300 words or so.

No solution intended.

Exercise 4 Probit

The probit model uses the cdf of the normal distribution (e.g., often denoted as Φ(⋅); pnorm()
in R) rather than the inverse logit.

1. Adapt the code from the notes to fit a probit model (or see this Gist). Use the same
ZeligData::turnout data and model specification vote ~ age + educate + income
+ race.

2. Compare your probit coefficients to the logit coefficients from the notes. Notice that
multiplying probit coefficients by 1.6 gives you roughly the logit coefficients.

3. Adapt the code to compute the first difference and 90% confidence interval. Compare to
the first difference and 90% confidence interval from the notes.

load packages
library(tidyverse)
library(numDeriv)

bernoulli log-likelihood with probit inverse link
probit_ll <- function(beta, y, X) {
p <- pnorm(X %*% beta) # Φ(�)
sum(dbinom(y, size = 1, prob = p, log = TRUE))

}

function to fit model
est_probit <- function(f, data) {
mf <- model.frame(f, data = data)
X <- model.matrix(f, data = mf)
y <- model.response(mf)

5

https://www.dropbox.com/scl/fo/7b9bvt51jrthm25ssvd67/AJjPxAAOphm_K00S1q3_oM0?rlkey=88wab9fsove0tjyfpkjedzj4n&dl=0
https://gist.github.com/carlislerainey/7798659a9d5d8decb87352068a2d1655
https://statmodeling.stat.columbia.edu/2006/06/06/take_logit_coef/

beta_start <- rep(0, ncol(X))

est <- optim(
par = beta_start,
fn = probit_ll,
y = y,
X = X,
hessian = TRUE,
method = "BFGS",
control = list(fnscale = -1)

)

if (est$convergence != 0) warning("Probit model did not converge.")

list(beta_hat = est$par, var_hat = solve(-est$hessian))
}

formula and data
turnout <- ZeligData::turnout
f <- vote ~ age + educate + income + race

fit model
fit_probit <- est_probit(f, data = turnout)

compare probit coefficients to logit coefficients from notes
fit_probit$beta_hat

[1] -1.76361803 0.01652753 0.10425348 0.09632643 0.16270805

fit_probit$beta_hat*1.6 # similar to logit

[1] -2.82178884 0.02644405 0.16680557 0.15412229 0.26033288

build chosen covariate rows
X_lo <- cbind(
"constant" = 1,
"age" = quantile(turnout$age, probs = 0.25),
"educate" = median(turnout$educate),
"income" = median(turnout$income),
"white" = 1

6

)
X_hi <- X_lo
X_hi[, "age"] <- quantile(turnout$age, probs = 0.75)

first difference (for probit)
fd_fn_probit <- function(beta, hi, lo) {
pnorm(hi %*% beta) - pnorm(lo %*% beta)

}

first difference and se
fd_hat_probit <- fd_fn_probit(fit_probit$beta_hat, X_hi, X_lo)
grad_probit <- grad(
func = fd_fn_probit,
x = fit_probit$beta_hat,
hi = X_hi,
lo = X_lo

)
se_fd_hat_probit <- sqrt(grad_probit %*% fit_probit$var_hat %*% grad_probit)

estimate
fd_hat_probit

[,1]
25% 0.1421895

90% ci
fd_hat_probit - 1.64 * se_fd_hat_probit # lower

[,1]
25% 0.1141743

fd_hat_probit + 1.64 * se_fd_hat_probit # upper

[,1]
25% 0.1702048

Exercise 5 Russett and Oneal (2001)

This exercise uses data from Russett and Oneal (2001). The model the probability of a dispute
in a dyad-year as a function of several predictors. A quick summary of their book is here. For

7

https://adambrown.info/p/notes/russett_and_oneal_triangulating_peace

our purposes, we’ll focus on dem.lo, which is the lower of the two Polity scores in the dyad.
For more details on the variables, see ?crdata::ro2001 or Table 1 on p. 277 of Oneal and
Russet (1997).

load russett and oneal data from {crdata}
ro <- crdata::ro2001

Fit the logit model dispute ~ allies + lcaprat2 + contiguity + dem.lo + logdstab +
power.

reproduce their simplest logistic regression model p. 314, table A3.1
f <- dispute ~ allies + lcaprat2 +
contiguity + dem.lo + logdstab + power

fit <- glm(f, family = "binomial", data = ro)

extract coefficient estimates
beta_hat <- coef(fit)

extract covariance estimates
v_hat <- vcov(fit)

We can make a summary of coefficient estimates with modelsummary(), but it isn’t very
informative about the quantity of interest. We want to know how the probability of a dispute
is changing!

library(modelsummary)
modelsummary(fit, stars = TRUE, gof_map = NA)

Use beta_hat and v_hat from above with the invariance property and the delta method (via
numDeriv::grad() and for loops) to compute the following quantities of interest and their
90% confidence interval.

1. Plot the estimated probability (i.e., expected value) of a dispute as dem.lo varies from
-10 to 10 (in small steps, of maybe one unit or 0.1 units). Fix all other numeric variables
at their medians and alliesNot Allies, contiguityNoncontiguous, and powerMinor
Powers at 0. Interpret. Compare the information in this plot to the information in the
table above. (Aside: How can these probabilities vary nonlinearly if the dem.lo variable
is included in the linear predictor linearly?)

2. What is the change in the probability of a dispute (i.e., “first difference”; ̂𝜋𝑚𝑎𝑥 − ̂𝜋𝑚𝑖𝑛)
when dem.lo changes from its minimum to its maximum, fixing the other variables at
the values described above? Notice that you can “kinda see” this value in the plot, but

8

(1)
(Intercept) −0.468*

(0.186)
alliesNot Allies 0.694***

(0.063)
lcaprat2 −0.264***

(0.019)
contiguityNoncontiguous −0.980***

(0.073)
dem.lo −0.091***

(0.005)
logdstab −0.306***

(0.026)
powerMinor Powers −0.467***

(0.070)
+ p <0.1, * p <0.05, ** p <0.01, ***
p <0.001

9

computing it directly gives you the exact value and the SE. The SE cannot be inferred
from the plot.1

Solution

load packages
library(tidyverse)

load data
ro <- crdata::ro2001
glimpse(ro)

Rows: 39,996
Columns: 12
$ stateaname <chr> "United States", "United States", "United States", "United ~
$ statebname <chr> "Canada", "Canada", "Canada", "Canada", "Canada", "Canada",~
$ statea <dbl> 2,~
$ stateb <dbl> 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,~
$ year <dbl> 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927, 1928, 1929,~
$ dispute <fct> No Dispute, No Dispute, No Dispute, No Dispute, No Dispute,~
$ allies <fct> Not Allies, Not Allies, Not Allies, Not Allies, Not Allies,~
$ lcaprat2 <dbl> 3.241306, 3.171194, 3.247957, 3.180491, 3.191799, 3.190288,~
$ contiguity <fct> Contiguous, Contiguous, Contiguous, Contiguous, Contiguous,~
$ dem.lo <int> 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, ~
$ logdstab <dbl> 5.820108, 5.820108, 5.820108, 5.820108, 5.820108, 5.820108,~
$ power <fct> At Least One Great Power, At Least One Great Power, At Leas~

reproduce their simplest logistic regression model p. 314, table A3.1
f <- dispute ~ allies + lcaprat2 +
contiguity + dem.lo + logdstab + power

fit <- glm(f, family = "binomial", data = ro)
arm::display(fit, digits = 4)

glm(formula = f, family = "binomial", data = ro)
coef.est coef.se

(Intercept) -0.4684 0.1864
alliesNot Allies 0.6938 0.0626
lcaprat2 -0.2643 0.0186

1I usually recommend computing a first difference as a change from the 25th to the 75th percentile, rather
than the min-to the max. The min-max comparison can be sensitive to model specification and represent
usual, unrealistic scenarios.

10

contiguityNoncontiguous -0.9803 0.0730
dem.lo -0.0908 0.0049
logdstab -0.3057 0.0260
powerMinor Powers -0.4674 0.0703

n = 39996, k = 7
residual deviance = 13506.2, null deviance = 15166.4 (difference = 1660.2)

extract coefficient estimates
beta_hat <- coef(fit)

extract covariance estimates
v_hat <- vcov(fit)

---- helpers (copied from notes) ----
ev_fn <- function(beta, X) {
plogis(X%*%beta)

}

fd_fn <- function(beta, hi, lo) {
plogis(hi%*%beta) - plogis(lo%*%beta)

}

---- part 2 ----

create chosen values for X
X_c <- cbind(
"constant" = 1, # intercept
"allies" = 0,
"lcaprat2" = median(ro$lcaprat2, na.rm = TRUE),
"contiguity" = 0,
"dem.lo" = -10:10,
"logdstab" = median(ro$logdstab, na.rm = TRUE),
"power" = 0

)

containers for estimated quantities of interest and ses
ev_hat <- numeric(nrow(X_c))
se_ev_hat <- numeric(nrow(X_c))

loop over each row of X_c and compute qi and se

11

for (i in 1:nrow(X_c)) {
for the ith row of X...

invariance property
ev_hat[i] <- ev_fn(beta_hat, X_c[i,])

delta method
grad <- grad(

func = ev_fn, # what function are we taking the derivative of?
x = beta_hat, # what variable(s) are we taking the derivative w.r.t.?
X = X_c[i,]) # what other values are needed?

se_ev_hat[i] <- sqrt(grad %*% v_hat %*% grad)
}

put X_c, qi estimates, and se estimates in data frame
qi <- cbind(X_c, ev_hat, se_ev_hat) |>
data.frame() |>
glimpse()

Rows: 21
Columns: 9
$ constant <dbl> 1,~
$ allies <dbl> 0,~
$ lcaprat2 <dbl> 2.830705, 2.830705, 2.830705, 2.830705, 2.830705, 2.830705,~
$ contiguity <dbl> 0,~
$ dem.lo <dbl> -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ~
$ logdstab <dbl> 8.042244, 8.042244, 8.042244, 8.042244, 8.042244, 8.042244,~
$ power <dbl> 0,~
$ ev_hat <dbl> 0.05913318, 0.05427729, 0.04979905, 0.04567245, 0.04187273,~
$ se_ev_hat <dbl> 0.004693969, 0.004266219, 0.003886446, 0.003549778, 0.00325~

plot
ggplot(qi, aes(x = dem.lo, y = ev_hat,

ymin = ev_hat - 1.64*se_ev_hat,
ymax = ev_hat + 1.64*se_ev_hat)) +

geom_ribbon() +
geom_line() +
labs(x = "dem.lo", y = "Pr(dispute)")

12

0.02

0.04

0.06

−10 −5 0 5 10
dem.lo

P
r(

di
sp

ut
e)

---- part 3 ----

make X_lo
X_lo <- cbind(
"constant" = 1, # intercept
"allies" = 0,
"lcaprat2" = median(ro$lcaprat2, na.rm = TRUE),
"contiguity" = 0,
"dem.lo" = -10,
"logdstab" = median(ro$logdstab, na.rm = TRUE),
"power" = 0

)

make X_hi by modifying the relevant value of X_lo
X_hi <- X_lo
X_hi[, "dem.lo"] <- 10

invariance property
fd_hat <- fd_fn(beta_hat, X_hi, X_lo)

delta method
grad <- grad(
func = fd_fn,
x = beta_hat,

13

hi = X_hi,
lo = X_lo)

se_fd_hat <- sqrt(grad %*% v_hat %*% grad)

estimated fd
fd_hat

[,1]
[1,] -0.04901941

estimated se
se_fd_hat

[,1]
[1,] 0.004235749

90% ci
fd_hat - 1.64*se_fd_hat # lower

[,1]
[1,] -0.05596604

fd_hat + 1.64*se_fd_hat # upper

[,1]
[1,] -0.04207278

Exercise 6 Optional: Berry, DeMeritt, and Esarey (2010)

Replicate Figure 4 Berry, DeMeritt, and Esarey (2009) using glm() (or optim() if you want
more practice), the invariance property, and the delta method with numerical gradients using
numDeriv::grad(). You can find the scobit.dta data set here.

Hints

• The scobit.dta data has variables that have been multiplied and squared, etc. Do not
use these variables. Use R formulas to handle these interactions and polynomials.

• Reading down Table 1 on p. 263, the variables you want are: newvote, closing, neweduc,
age, south, and gov.

14

https://www.dropbox.com/scl/fo/pvqagocje2ulry4ivnn99/AGd0lsPZvFXuveiyCLCArkE?rlkey=gd3ntw9m44qfaw2ye5y3ltanj&dl=0

• The eight distinct values (i.e., 1, 2,…, 8) of neweduc correspond to the eight categories
that Figure 4 presents along the x-axis.

• You must compute a first difference changing closing from 0 to its mean. However, you
must compute this first difference for all eight values of neweduc (i.e., Figure 4 shows 8
first differences). You’ll need a plan to compute these eight first differences compactly.
Perhaps use a for-loop (or purrr::map if you want a new challenge).

code to load and clean the data
scobit <- haven::read_dta("data/scobit.dta") %>%
filter(newvote != -1) %>% # weird -1s in data; unsure if sufficient
glimpse()

Rows: 99,676
Columns: 16
$ state <dbl> 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 9~
$ vote <dbl> 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2~
$ age <dbl> 60, 80, 32, 25, 55, 63, 20, 53, 49, 27, 58, 56, 34, 34, 35, 3~
$ educ <dbl> 13, 13, 13, 13, 11, 14, 11, 11, 13, 13, 11, 13, 19, 19, 15, 1~
$ citizen <dbl> 1, 1~
$ rweight <dbl> 207134, 215836, 184639, 184883, 168557, 179148, 181510, 19285~
$ south <dbl> 0, 0~
$ gov <dbl> 0, 0~
$ closing <dbl> 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 2~
$ age2 <dbl> 3600, 6400, 1024, 625, 3025, 3969, 400, 2809, 2401, 729, 3364~
$ educ2 <dbl> 25, 25, 25, 25, 16, 36, 16, 16, 25, 25, 16, 25, 64, 64, 36, 2~
$ cloeduc <dbl> 145, 145, 145, 145, 116, 174, 116, 116, 145, 145, 116, 145, 2~
$ cloeduc2 <dbl> 725, 725, 725, 725, 464, 1044, 464, 464, 725, 725, 464, 725, ~
$ newvote <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0~
$ newage <dbl> 0, 0~
$ neweduc <dbl> 5, 5, 5, 5, 4, 6, 4, 4, 5, 5, 4, 5, 8, 8, 6, 5, 5, 3, 5, 1, 6~

the formula
f <- newvote ~ poly(neweduc, 2, raw = TRUE) + closing + poly(age, 2, raw = TRUE) + south + gov

rest of solution TBA…

Exercise 7 Holland (2015)

Holland (2015) writes:

15

My first hypothesis is that [the number of] enforcement operations [operations]
drop off with the fraction of poor residents [lower] in an electoral district. So
district poverty should be a negative and significant predictor of enforcement, but
only in politically decentralized cities [Lima and Santiago]. Poverty should have
no relationship with enforcement in politically centralized cities [Bogota] once one
controls for the number of vendors (p. 362)”

In the lecture, we used optim() to fit a Poisson regression model [Gist] and a negative binomial
regression model to Holland’s data for Santiago.

1. Fit the same model below using glm() and glm.nb(). Compare the coefficients and
standard errors. Use {modelsummary} to make a side-by-side table of coefficient and
SE estimates. Explain the differences in the estimates across models.

2. Compute a relevant quantity of interest. Explain the differences in the estimates across
models.

3. Simulate the five fake data sets from the two fitted models (i.e., the predictive distri-
bution). Compare the five data sets to the observed data. Note: Now that we have
covariates, each observation has it’s own parameters, to make sure to that 𝜆/lambda
and 𝜇/mu are specific to each observation for the Poisson and NB models, respectively.
You can do this by giving rpois() a vector lambda of length length(y) or nrow(X)
rather than a scalar, for example. 𝜃/size is also needed to simulate fake data from the
negative binomial distribution, but it’s constant.

load data
holland <- crdata::holland2015 |>
filter(city == "santiago")

formula corresponds to model 1 for each city in holland (2015) table 2
f <- operations ~ lower + vendors + budget + population

solution needs to be updated

formula corresponds to model 1 for each city in holland (2015) table 2
f <- operations ~ lower + vendors + budget + population

fit poisson regression model for Santiago
fit_pois <- glm(f, family = poisson, data = holland)

fit poisson regression model for Santiago
fit_nb <- MASS::glm.nb(f, data = holland)

modelsummary::modelsummary(list(fit_pois, fit_nb))

16

https://gist.github.com/carlislerainey/7a5cb5d23115079986092433910249b4

(1) (2)
(Intercept) 2.619 2.706

(0.519) (1.850)
lower −0.038 −0.046

(0.009) (0.027)
vendors −0.221 −0.188

(0.122) (0.225)
budget −0.001 0.000

(0.000) (0.002)
population 0.015 0.021

(0.009) (0.027)
Num.Obs. 34 34
AIC 226.8 133.7
BIC 234.4 142.8
Log.Lik. −108.395 −60.842
F 13.305 2.476
RMSE 4.40 4.79

17

Exercise 8 King et al. (1990)

The ZeligData::coalition data comes from King et al. (1990). The key variable is duration,
which is the survival times of government coalitions in parliamentary democracies. Model
duration using the Weibull distribution (as described in the notes–make sure to review this
carefully!) using the variables fract and numst2. Compute the first difference and SE as
fract moves from a low value to a high value for numst2 == 0.

• duration: The length of time (in months) that a cabinet survives before dissolution.
• fract: Fractionalization index from Rae (1971), measuring the number and relative size

of parties in parliament. Higher values indicate more parties of smaller average size (i.e.,
a more fragmented party system).

• numst2: Numerical status of the cabinet, coded 1 for majority governments and 0 for
minority governments.

Solution TBA.

Exercise 9 Clark and Golder (2006); t distribution

The code below reproduces the coefficient estimates for the normal linear model from Clark
and Golder (2006) as shown in an earlier exercise. Re-estimate their model using a location-
scale t distribution (see Exercise 11 for Week 2) modeling the mean 𝜇 = 𝑋𝛽. Use ML to
estimate the coefficients 𝛽, the scale 𝜎, and the df 𝜈. Comment on the differences between the
coefficient estimates and standard errors using the normal model and the t. What does the
ML estimate ̂𝜈 of the degrees of freedom parameter 𝜈 tell us about Clark and Golder’s data?

load packages
library(tinytable)

load data
cg <- crdata::cg2006

create design matrix
f <- enep ~ eneg*log(average_magnitude) + eneg*upper_tier + en_pres*proximity

normal model
fit <- glm(f, data = cg, family = gaussian)

For convenience, here is how me might make a quick table using tinytable::tt().

18

https://pos5747.github.io/notes/wk04/04-big-four.html#weibull

make a table
data.frame(term = names(coef(fit)),

beta_hat = coef(fit),
se = sqrt(diag(vcov(fit)))) |>

tt(digits = 2, escape = TRUE) |>
theme_latex(placement = "H")

term beta_hat se
(Intercept) 2.916 0.176
eneg 0.112 0.071
log(average_magnitude) 0.078 0.116
upper_tier -0.057 0.02
en_pres 0.264 0.064
proximity -3.098 0.352
eneg:log(average_magnitude) 0.264 0.067
eneg:upper_tier 0.059 0.014
en_pres:proximity 0.683 0.137

Hints:

• The R function metRology::dt.scaled(..., log = TRUE) computes the required log-
likelihood for each observation.

• You need to estimate the 𝜎 =sd and 𝜈 = df parameters, but they are fixed.
• Model the mean as a with the usual linear predictor 𝑋𝑖𝛽. No inverse link function is

needed, because mean is unbounded.
• When creating the log-likelihood function, the first argument must be a single parameter

vector that include all parameters stacked into a single vector. I often call this par. Then
extract par into beta, sigma, and nu immediately inside the function.

Solution.

assuming code from question already included

create design matrix
mf <- model.frame(f, data = cg)
X <- model.matrix(f, data = mf)
y <- model.response(mf)

19

t log-likelihood
t_ll <- function(par, y, X){

pull out parameters from par for easy reading
k <- ncol(X)
beta <- par[1:k]
sigma <- par[k+1] # 2nd to last
nu <- par[k+2] # last

#
mu <- X%*%beta
sum(metRology::dt.scaled(y,

mean = mu,
sd = sigma,
df = nu,
log = TRUE))

}

use optim()
par_start <- c(rep(0, ncol(X)), 2, 10)
est <- optim(
par = par_start,
fn = t_ll,
y = y,
X = X,
method = "BFGS",
control = list(fnscale = -1),
hessian = TRUE

)

Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced

Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced

Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced

Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced
Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced

20

Warning in log(sd): NaNs produced

Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced
Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced
Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced

Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced
Warning in log(sd): NaNs produced

Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced
Warning in stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE): NaNs produced

Warning in log(sd): NaNs produced

data.frame("term" = c(colnames(X), "sigma", "nu"),
"beta_hat" = est$par,
"se" = sqrt(diag(solve(-est$hessian)))) |>

tt(digits = 2, escape = TRUE) |>
theme_latex(placement = "H")

21

term beta_hat se
(Intercept) 2.535 0.16
eneg 0.211 0.083
log(average_magnitude) 0.4 0.095
upper_tier -0.046 0.017
en_pres 0.193 0.059
proximity -2.92 0.229
eneg:log(average_magnitude) 0.023 0.057
eneg:upper_tier 0.05 0.013
en_pres:proximity 0.707 0.114
sigma 0.715 0.05
nu 2.243 0.314

The estimate of the degrees of freedom parameter is 2.3 with a standard error of about 0.3. This
means that the distribution of the effective number of electoral parties deviates substantially
from normal (when df > 10, the t starts to look somewhat normal). 𝜈 ≈ 2.5 suggests that
observed values often fall several standard deviations away from the mean. This has a nice
substantive interpretation. While there seems to be some predictability to ENEP, some cases
are highly unusual, which suggests “something different” might be going on in those cases.

Exercise 10 Connections

We have covered a wide range of tools. Use the list below as a menu and sketch the connections
between two or more ideas. Represent the connections in any format you prefer; a diagram
with arrows might make sense to you or you might prefer short written explanations. Simply
noting that two things are connected is insufficient—most things are related in this course.
Focus on why ideas are connected or how they fit together.

*Hint: Definitely describe the connections between maximum likelihood estimates, Fisher in-
formation, the invariance property, and the delta method. Try for 2-3 other collections of 3
to 8 things that fit together as well.

• Mathematical Tools: log, first derivative, second derivative, gradient, Hessian, matrix
multiplication, pdf/pmf, expected value, variance

• Engines: OLS, maximum likelihood, method of moments; also likelihood function, log-
likelihood function

• Distributions: Bernoulli, exponential, Weibull, log-normal, Poisson, negative binomial,
t, normal, beta, uniform

22

• Confidence intervals: parametric bootstrap, Fisher information, delta method, Wald
method

• Hypothesis Tests: nothing so far
• Quantities of Interest: invariance property, odds, exponential rate/mean, beta shape

parameters to mean and variance, expected value, first difference
• Estimate Evaluation: predictive distribution
• Estimator Evaluation: sampling distribution, bias, consistency, coverage, asymptotic

distribution of estimator, Monte Carlo simulation
• R: optim(), numDeriv()::grad(), %*%, density + distribution + quantile + random

number generator functions for various distributions
• Data Sets: toothpaste cap, ZeligData::turnout, Clark and Golder’s (2006)

crdata::cg2006, Lahman’s batting_average, WDI, faithful, Herron’s hockey,
Holland’s (2015) crdata::holland2015, the UF Election Lab turnout rates,
ZeligData::coalition

No solution intended.

Exercise 11 Be Creative

We know how to build models.

1. Choose a distribution for 𝑦. Many choices here.
2. Choose the parameter(s) to model as functions of design matrix 𝑋 and those to model

as fixed. 1-3 options here, usually.
3. Choose an inverse link function that maps the unbounded linear predictor 𝑋𝑖𝛽 ∈ ℝ onto

the parameter space of the modeled parameters. A few options here.

Make creative (or standard) choices at each step; see what model you can build! What sorts of
data might your model fit well? (No need to fit this model or write the exact log-likelihood.)

No solution intended.

References

Berk, Richard. 2010. “What You Can and Can’t Properly Do with Regression.” Journal of
Quantitative Criminology 26 (4): 481–87. https://doi.org/10.1007/s10940-010-9116-4.

Berry, William D., Jacqueline H. R. DeMeritt, and Justin Esarey. 2009. “Testing for Interac-
tion in Binary Logit and Probit Models: Is a Product Term Essential?” American Journal
of Political Science 54 (1): 248–66. https://doi.org/10.1111/j.1540-5907.2009.00429.x.

Clark, William Roberts, and Matt Golder. 2006. “Rehabilitating Duverger’s Theory.” Com-
parative Political Studies 39 (6): 679–708. https://doi.org/10.1177/0010414005278420.

23

https://doi.org/10.1007/s10940-010-9116-4
https://doi.org/10.1111/j.1540-5907.2009.00429.x
https://doi.org/10.1177/0010414005278420

Holland, Alisha C. 2015. “The Distributive Politics of Enforcement.” American Journal of
Political Science 59 (2): 357–71. https://doi.org/10.1111/ajps.12125.

King, Gary. 1998. Unifying Political Methodology: The Likelihood Theory of Statistical Infer-
ence. Revised. Ann Arbor, MI: University of Michigan Press.

King, Gary, James E. Alt, Nancy Elizabeth Burns, and Michael Laver. 1990. “A Unified
Model of Cabinet Dissolution in Parliamentary Democracies.” American Journal of Polit-
ical Science 34 (3): 846. https://doi.org/10.2307/2111401.

Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables.
Vol. 7. Advanced Quantitative Techniques in the Social Sciences. Thousand Oaks, CA:
Sage.

Oneal, John R., and Bruce M. Russet. 1997. “The Classical Liberals Were Right: Democracy,
Interdependence, and Conflict, 1950-1985.” International Studies Quarterly 41 (2): 267–94.
https://doi.org/10.1111/1468-2478.00042.

Russett, Bruce, and John R. Oneal. 2001. Triangulating Peace: Democracy, Interdependence,
and International Organizations. New York: W. W. Norton & Company.

24

https://doi.org/10.1111/ajps.12125
https://doi.org/10.2307/2111401
https://doi.org/10.1111/1468-2478.00042

	Berk (2010)
	Clark and Golder (2006), normal distribution
	Long (1997) or King (1998)
	Probit
	Russett and Oneal (2001)
	Optional: Berry, DeMeritt, and Esarey (2010)
	Holland (2015)
	King et al. (1990)
	Clark and Golder (2006); t distribution
	Connections
	Be Creative
	References

