
Week 3 Exercises

Exercise 1 Mean v. median

Suppose 𝑦 follows a normal model with mean 𝜇 and SD 𝜎. Then avg(𝑦) is the best unbiased
estimator of 𝜇. But median(𝑦) is also an unbiased estimator of 𝜇. Use a Monte Carlo simulation
to show how avg(𝑦) is a better estimator of 𝜇 than median(𝑦).
The average is better because the SE of the average estimator is smaller than the SE of the
median estimator.

parameters
mu <- 0
sigma <- 1
N <- 10 # sample size of y
n_mc_sims <- 10000 # monte carlo repetitions

containers
mean_hat <- numeric(n_mc_sims)
median_hat <- numeric(n_mc_sims)

simulate many data sets y; compute and store estimates for each
for (i in 1:n_mc_sims) {
y <- rnorm(N, mean = mu, sd = sigma)
mean_hat[i] <- mean(y)
median_hat[i] <- median(y)

}

sd(mean_hat) # se of avg estimator

[1] 0.3188053

1

sd(median_hat) # se of median estimator

[1] 0.37633

Exercise 2 Asymptotics as approximations

For a large number of repetitions, do the following:

1. Simulate a data set 𝑦 with 𝑁 = 50 observations from the exponential distribution with
𝜆 = 2.

2. Compute the point estimate 𝜆̂ = 1
avg(𝑦) . Store this point estimate.

Compare the mean and SD of the simulated point estimates to the theoretical mean and SD
of the asymptotic sampling distribution. We care, of course, about the actual sampling distri-
bution, but we have to use an asymptotic approximation in practice. Discuss the differences
and whether they seem important or unimportant.

Hint: For the exponential model, the asymptotic sampling distribution of 𝜆̂ is 𝜆̂ 𝑎∼
𝑁 (𝜆, 𝜆2

𝑁).

Optional: Go beyond the mean and SD. Use a table of quantiles of the simulated point
estimates and theoretical distribution and/or plots of the CDFs to compare the simulated (i.e.,
actual) and theoretical distributions.

Solution

load packages
library(tinytable)
options(tinytable_tt_digits = 3)
options(tinytable_latex_placement = "H")

set seed for reproducibility
set.seed(1234)

parameters
lambda <- 2
N <- 50 # sample size
R <- 10000 # number of mc repetitions

loop
lambda_hat <- numeric(R) # container to store results
for (i in 1:R) {

2

y <- rexp(N, rate = lambda) # simulate data set
lambda_hat[i] <- 1/mean(y) # compute and store estimate
}

empirical summaries
emp_mean <- mean(lambda_hat)
emp_sd <- sd(lambda_hat)

asymptotic
asy_mean <- lambda
asy_sd <- sqrt(lambda^2 / N)

data frame of results
res <- data.frame(
Statistic = c("Mean", "SD"),
Empirical = c(emp_mean, emp_sd),
Asymptotic = c(asy_mean, asy_sd)

)

print table
tt(
res,
digits = 3,
align = "lrr",

)

Statistic Empirical Asymptotic
Mean 2.04 2
SD 0.293 0.283

quantile comparison table
probs <- c(0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99)
emp_q <- quantile(lambda_hat, probs = probs)
asy_q <- qnorm(probs, mean = asy_mean, sd = asy_sd)

combine into data frame
quant <- data.frame(
p = probs,
empirical = emp_q,
asymptotic = asy_q,

3

difference = emp_q - asy_q
)

make table
tt(
quant,
digits = 3, # no rounding for the text column; 3 decimals for numbers
align = "lrr",

)

p empirical asymptotic difference
0.01 1.47 1.34 0.1302
0.05 1.61 1.53 0.073
0.1 1.69 1.64 0.0503
0.25 1.83 1.81 0.0242
0.5 2.01 2 0.013
0.75 2.22 2.19 0.028
0.9 2.43 2.36 0.0628
0.95 2.56 2.47 0.0995
0.99 2.83 2.66 0.176

load packages
library(tidyverse)

plot ecdf and asymptotic distribution
gg_data <- data.frame(lambda_hat = lambda_hat)
ggplot(gg_data, aes(x = lambda_hat)) +
stat_ecdf() +
stat_function(fun = function(x) pnorm(x,

mean = asy_mean,
sd = asy_sd),

color = "red") +
labs(

title = "ECDF of Simulated ML Estimates vs Asymptotic Sampling Distribution",
x = expression(hat(lambda)),
y = "Cumulative Probability"

)

4

0.00

0.25

0.50

0.75

1.00

1 2 3

λ̂

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

ECDF of Simulated ML Estimates vs Asymptotic Sampling Distribution

Discussion

• Center (bias). The empirical mean of 𝜆̂ is about 2.04, compared to the true 𝜆 = 2.000.
This is a difference of roughly 2%. At 𝑁 = 50, this upward bias is present but quite
small.

• Spread. The empirical SD is about 0.293, while the asymptotic SD is 0.283. This
difference is 3.7% of the asymptotic value, so the asymptotic variance formula provides
an accurate description of variability.

• Quantiles and tails. For the median, the empirical value is 2.013 compared to an
asymptotic prediction of 2. At the 1% and 99% quantiles, the differences are about 0.13
and 0.176, respectively, which correspond to differences of only a few percent relative to
the true scale. The ECDF and normal CDF curves are nearly indistinguishable except
in the tails.

• Bottom line. With 𝑁 = 50, the asymptotic normal distribution closely matches the
finite-sample distribution of 𝜆̂. The bias is about 2%, the SD differs by about 4%, and
quantile differences are small. The asymptotic normal approximation is accurate and
reliable for practical use at this sample size.

Exercise 3 German Tank Problem

Suppose a discrete uniform distribution from 0 to 𝐾. The pmf is 𝑓(𝑥; 𝐾) = 1
𝐾+1 , 𝑥 ∈

{0, 1, … , 𝐾}. The ML estimator is 𝐾̂ = max(𝑦). The method of moments estimator is 𝐾̂ =
2 × avg(𝑦). Use a Monte Carlo simulation to evaluate bias and variance of each estimator for

5

a small (𝑁 = 3), medium (𝑁 = 25), and large sample size (𝑁 = 1, 000). Which estimator do
you recommend?

Note: This model violates several of the regularity conditions, so the usual asymptotic guar-
antees do not hold.

Solution

load packages
library(tinytable)
library(dplyr)
options(tinytable_tt_digits = 3)
options(tinytable_latex_placement = "H")

set seed for reproducibility
set.seed(1234)

parameters
K <- 100 # true K
Ns <- c(3, 25, 1000) # sample sizes
R <- 10000 # number of mc repetitions

container: list of data frames
res_list <- list()

loop over sample sizes
for (N in Ns) {
K_hat_mle <- numeric(R) # container for MLE
K_hat_mom <- numeric(R) # container for MOM

for (i in 1:R) {
y <- sample(0:K, N, replace = TRUE) # simulate data set
K_hat_mle[i] <- max(y) # MLE
K_hat_mom[i] <- 2 * mean(y) # MOM

}

empirical summaries
emp_mean_mle <- mean(K_hat_mle)
emp_sd_mle <- sd(K_hat_mle)
emp_mean_mom <- mean(K_hat_mom)
emp_sd_mom <- sd(K_hat_mom)

store results for this N
res_list[[as.character(N)]] <- data.frame(

6

N = N,
Estimator = c("MLE", "MOM"),
Mean = c(emp_mean_mle, emp_mean_mom),
SD = c(emp_sd_mle, emp_sd_mom),
Bias = c(emp_mean_mle - K, emp_mean_mom - K),
MSE = c(mean((K_hat_mle - K)^2), mean((K_hat_mom - K)^2))

)
}

combine all into one data frame
res <- bind_rows(res_list)

print table
tt(
res,
digits = 5,
align = "lrrrrr",

)

N Estimator Mean SD Bias MSE
3 MLE 75.055 19.7364 -24.9454 1011.7588
3 MOM 99.952 33.59 -0.048467 1128.1803
25 MLE 96.665 3.6737 -3.3353 24.6191
25 MOM 100.191 11.7466 0.191144 138.0057
1000 MLE 100 0 0 0
1000 MOM 99.993 1.8362 -0.007073 3.3712

Notice that the ML estimator is severely biased downward in small samples. But it also has
a much smaller variance. It’s not clear how to tradeoff these two. However, it’s worth noting
the the severely biased ML estimator has a smaller mean-squared error.

Exercise 4 Jensen’s Inequality

Suppose the usual exponential model. The ML estimate of the rate 𝜆 is 𝜆̂ = 1
avg(𝑦) . Using the

invariance property, the ML estimate of the mean 1
𝜆 is ̂𝜇 = 1

𝜆̂ . Show analytically that the ML
estimate of the mean is unbiased, while the ML estimate of the rate is biased.

7

Jensen’s Inequality. If 𝑔 is a convex function and 𝑋 is a random variable with 𝔼[𝑋] finite,
then 𝔼[𝑔(𝑋)] ≥ 𝑔(𝔼[𝑋]), with strict inequality unless 𝑋 is degenerate (i.e., constant almost
surely).

Hint: First show that ̂𝜇 is unbiased. Then use Jensen’s inequality to show that 𝜆̂ is biased
upward. You do not need to find the size of the bias, just use Jensen’s inequality to show that
the ML estimate of the rate is biased. To use Jensen’s inequality, let 𝑔(𝑥) = 1/𝑥, and notice
that 𝑔(𝑥) is convex on (0, ∞) (since 𝑔″(𝑥) = 2/𝑥3 > 0).

Solution

1) Unbiasedness of the ML estimate of the mean

̂𝜇 = avg(𝑦) = 1
𝑁 ∑𝑁

𝑖=1 𝑦𝑖 is the sample mean of iid observations. 𝔼[𝑦𝑖] = 1
𝜆 . Then

𝔼[̂𝜇] = 𝔼 [1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖] (definition of ̂𝜇)

= 1
𝑁 ⋅ 𝔼 [

𝑁
∑
𝑖=1

𝑦𝑖] (linearity)

= 1
𝑁 ⋅ [

𝑁
∑
𝑖=1

𝔼(𝑦𝑖)] (sum of expectations)

= 1
𝑁 ⋅ [

𝑁
∑
𝑖=1

1
𝜆] (each has mean 1/𝜆)

= 1
𝑁 ⋅ [𝑁 ⋅ 1

𝜆] (sum 𝑁 identical terms)

= 1
𝜆 (simplify)

= 𝜇 (definition of 𝜇)

Because 𝔼(̂𝜇) = 𝜇, ̂𝜇 is unbiased estimate of the mean.

2) Bias of the ML estimate of the rate

𝜆̂ = 1
avg(𝑦) = (1

𝑁 ∑𝑁
𝑖=1 𝑦𝑖)

−1
. Let 𝑔(𝑥) = 1/𝑥, and notice that 𝑔(𝑥) is convex on (0, ∞)

(since 𝑔″(𝑥) = 2/𝑥3 > 0). Then

8

𝔼[𝜆̂] = 𝔼 [1
avg(𝑦)] (definition of 𝜆̂)

= 𝔼 [𝑔(avg(𝑦))] (definition of 𝑔 above)
> 𝑔(𝔼[avg(𝑦)]) (Jensen’s inequality, 𝑔 convex)

= 1
𝔼[avg(𝑦)] (apply 𝑔)

= 1
1
𝑁 ∑𝑁

𝑖=1 𝔼(𝑦𝑖)
(linearity of expectation)

= 1
1
𝑁 ∑𝑁

𝑖=1
1
𝜆

(each 𝑦𝑖 has mean 1/𝜆)

= 1
1
𝑁 ⋅ 𝑁 ⋅ 1

𝜆
(sum of 𝑁 identical terms)

= 𝜆 (simplify)

Since the inequality is strict for finite 𝑁 (the distribution of avg(𝑦) is non-degenerate), 𝔼[𝜆̂] > 𝜆.
Thus, the ML estimate of the rate is biased upward.

Exercise 5 Poisson

Suppose a Poisson model. The ML estimate of the mean parameter 𝜆 is 𝜆̂ = avg(𝑦). Find an
estimate of the SE using the observed Fisher information.

Solution

The log-likelihood is ℓ(𝜆) = ∑𝑁
𝑖=1 [𝑦𝑖 log 𝜆 − 𝜆 − log(𝑦𝑖!)].

First, find the second derivative with respect to 𝜆.

9

ℓ(𝜆) =
𝑁

∑
𝑖=1

[𝑦𝑖 log 𝜆 − 𝜆 − log(𝑦𝑖!)] Poisson log-likelihood

𝜕ℓ
𝜕𝜆 =

𝑁
∑
𝑖=1

(𝑦𝑖 ⋅ 1
𝜆 − 1 − 0) use 𝑑

𝑑𝜆 log 𝜆 = 1
𝜆, 𝑑

𝑑𝜆(−𝜆) = −1, log(𝑦𝑖!) is constant

=
𝑁

∑
𝑖=1

(𝑦𝑖
𝜆 − 1) = 1

𝜆
𝑁

∑
𝑖=1

𝑦𝑖 − 𝑁 collect terms

𝜕2ℓ
𝜕𝜆2 = 𝜕

𝜕𝜆 (1
𝜆

𝑁
∑
𝑖=1

𝑦𝑖 − 𝑁) differentiate again

=
𝑁

∑
𝑖=1

(− 𝑦𝑖
𝜆2) − 0 use 𝑑

𝑑𝜆 (1
𝜆) = − 1

𝜆2 , 𝑁 is constant

= −
𝑁

∑
𝑖=1

𝑦𝑖
𝜆2 .

The observed Fisher information is

ℐobs(𝜆) = − 𝜕2ℓ
𝜕𝜆2 =

𝑁
∑
𝑖=1

𝑦𝑖
𝜆2 .

Asymptotically, Var(𝜆̂) ≈ ℐobs(𝜆)−1.1

To find the estimate of the SE, replace 𝜆 with 𝜆̂:

ŜE(𝜆̂) = √ℐobs(𝜆̂)−1 = √ 𝜆̂
𝑁 = √avg(𝑦)

𝑁 .

Exercise 6 operations

The code below loads the number of enforcement operations for each district in Bogota from
Holland (2015) from the {crdata} package. See ?crdata::holland2015 for details.

1Rather than “approximately equals” (≈), it’s more technically correct to write “asymptotically equals.” How-
ever, we treat “asymptotically equals” to mean “approximately” in practice. Given the practical orientation
of the course, it seems better to write “approximately” here.

10

load holland2015 data set from crdata package
holland2015 <- crdata::holland2015

get operations in bogota only
ops <- holland2015$operations[holland2015$city == "bogota"]

print
ops

[1] 15 10 15 20 8 4 8 16 4 28 2 8 4 4 4 4 8 3 4

A Poisson model.

Task: Using the Poisson estimators from the previous question, find the ML estimate and SE
estimate of 𝜆 for a Poisson model.

But before moving on, compare the SD of the predictive distribution (no need to simulate, it
depends only and directly on 𝜆) and the SD of the data. Why might this be a problem for the
SE estimate?

A negative-binomial model.

For the Poisson model, the mean and variance of the outcome are directly linked. In fact, both
equal 𝜆. For most outcomes (almost all?), the variance is much larger than the average. This
means a huge mismatch between the variance of the outcomes and the model.

The negative binomial model has an additional parameter 𝑟 that allows the variance to be
larger than (but not smaller than) the mean. For almost all datasets, this is a good default.

The negative binomial distribution is often parameterized by a mean 𝜇 > 0 and a dispersion
(or “size”) parameter 𝑟 > 0.2 Its probability mass function is

Pr(𝑌 = 𝑦) = Γ(𝑦 + 𝑟)
Γ(𝑟) 𝑦! (𝑟

𝑟 + 𝜇)
𝑟

(𝜇
𝑟 + 𝜇)

𝑦
, 𝑦 = 0, 1, 2, … ,

which has mean 𝜇 and variance 𝜇+𝜇2/𝑟. In R, the base function dnbinom() directly supports
this mean–size parameterization when the mu argument is supplied (e.g., dnbinom(y, size =
r, mu = mu)).

Task. Use optim() to estimate the mean and its SE for the ops variable. Compare to the
Poisson estimates.

Solution.

2There are other common parameterizations that are less interpretable for our purposes.

11

First, fit the Poisson model and compute the ML estimate and SE of 𝜆 without using optim(),
following the observed-information derivation above.

load packages
library(tidyverse)
library(tinytable)

load holland2015 data set from crdata package
holland2015 <- crdata::holland2015

get operations in bogota only
ops <- holland2015$operations[holland2015$city == "bogota"]

estimate lambda with ml
N <- length(ops)
lambda_hat_pois <- mean(ops); lambda_hat_pois

[1] 8.894737

se_lambda_hat_pois <- sqrt(lambda_hat_pois / N); se_lambda_hat_pois

[1] 0.6842105

compare predictive SD to data SD
sd_pred_pois <- sqrt(lambda_hat_pois) # predictive SD under Poisson
sd_data <- sd(ops) # empirical SD

summarize results in a small table
res_pois <- data.frame(
Statistic = c("Predictive SD ", "Data SD"),
Value = c(sd_pred_pois, sd_data)

)

tt(res_pois, digits = 3, align = "lr")

Statistic Value
Predictive SD 2.98
Data SD 6.94

Now use optim() to fit a negative-binomial model. Compare to the Poisson estimates.

12

negative-binomial log-likelihood (mean–size parameterization)
nb_ll_fn <- function(theta, y) {
mu <- theta[1]
r <- theta[2]
sum(dnbinom(y, size = r, mu = mu, log = TRUE))

}

function to fit nb model
est_nb <- function(y) {
est <- optim(

par = c(3, 1), # starting values
fn = nb_ll_fn,
y = y,
control = list(fnscale = -1),
hessian = TRUE

)

info_obs <- -est$hessian # observed information
var_hat <- solve(info_obs) # covariance matrix estimate

if (est$convergence != 0) print("Model did not converge!")

list(theta_hat = est$par, var_hat = var_hat)
}

fit nb model to ops
fit_nb <- est_nb(ops)

nb mean estimate and its se
mu_hat_nb <- fit_nb$theta_hat[1]; mu_hat_nb

[1] 8.894568

se_mu_hat_nb <- sqrt(fit_nb$var_hat[1,1]); se_mu_hat_nb

[1] 1.434298

comparison table
res_compare <- data.frame(
Model = c("Poisson", "Negative-binomial"),

13

Parameter = c("lambda", "mu"),
Estimate = c(lambda_hat_pois, mu_hat_nb),
SE = c(se_lambda_hat_pois, se_mu_hat_nb)

)

tt(res_compare, digits = 3, align = "l l r r")

Model Parameter Estimate SE
Poisson lambda 8.89 0.684
Negative-binomial mu 8.89 1.434

Exercise 7 Exponential

Suppose an exponential model of 𝑦. We know that the ML estimate of the rate 𝜆 is 𝜆̂ = 1
avg(𝑦) .

By the invariance property, the ML estimate of the mean 𝜇 = 1
𝜆 is ̂𝜇 = 1

𝜆̂ .

1. Use the observed Fisher information to find a closed-form estimate of the SE of 𝜆̂.
2. Then use the delta method to find a closed-form estimate of the SE of ̂𝜇.

Hint: For an exponential model with rate 𝜆, the density is 𝑓(𝑦; 𝜆) = 𝜆𝑒−𝜆𝑦, so ℓ(𝜆) = ∑ (log 𝜆−
𝜆𝑦𝑖).

Solution

The log-likelihood is

ℓ(𝜆) =
𝑁

∑
𝑖=1

[log 𝜆 − 𝜆𝑦𝑖].

First, find the second derivative with respect to 𝜆.

14

ℓ(𝜆) =
𝑁

∑
𝑖=1

[log 𝜆 − 𝜆𝑦𝑖] Exponential log-likelihood

𝜕ℓ
𝜕𝜆 =

𝑁
∑
𝑖=1

(1
𝜆 − 𝑦𝑖) use 𝑑

𝑑𝜆 log 𝜆 = 1
𝜆, 𝑑

𝑑𝜆(−𝜆𝑦𝑖) = −𝑦𝑖

= 𝑁
𝜆 −

𝑁
∑
𝑖=1

𝑦𝑖 collect terms

𝜕2ℓ
𝜕𝜆2 = 𝜕

𝜕𝜆(𝑁
𝜆 −

𝑁
∑
𝑖=1

𝑦𝑖) differentiate again

= − 𝑁
𝜆2 − 0 use 𝑑

𝑑𝜆(1
𝜆) = − 1

𝜆2 , ∑ 𝑦𝑖 is constant.

The observed Fisher information is

ℐobs(𝜆) = − 𝜕2ℓ
𝜕𝜆2 = 𝑁

𝜆2 .

To find the estimate of the SE, replace 𝜆 with 𝜆̂:

ŜE(𝜆̂) = √ℐobs(𝜆̂)−1 = √𝜆̂2

𝑁 = 𝜆̂√
𝑁

= 1√
𝑁 avg(𝑦)

.

Now suppose we use the invariance property to obtain ̂𝜇 = 1
𝜆̂

. Then we can use the delta

method to estimate the SE with 𝜏(𝜆) = 1
𝜆 .

The first derivative is 𝜏 ′(𝜆) = − 1
𝜆2 .

Plugging in, we have

V̂ar(̂𝜇) ≈ [𝜏 ′(𝜆̂)]2 ⋅ V̂ar(𝜆̂) = (1
𝜆̂2

)
2

⋅ 𝜆̂2

𝑁

= 1
𝑁 𝜆̂2

.

And the standard error is

ŜE(̂𝜇) ≈ √ 1
𝑁 𝜆̂2

= 1√
𝑁 𝜆̂

= avg(𝑦)√
𝑁

.

15

Exercise 8 Delta method, by hand

Suppose you obtain the ML estimate ̂𝜃 = (̂𝑎, ̂𝑏) = (2, 1) with an estimated covariance matrix
of

V̂ar(̂𝜃) = V̂ar(̂𝑎, ̂𝑏) = [1 1
2

1
2 1] .

However, you want to estimate the quantity of interest 𝑞 = 𝜏(𝑎, 𝑏) = 𝑎
𝑏 . Find ̂𝑞 using the

invariance property and estimate the SE of ̂𝑞 using the delta method. (Find the gradient
analytically.) Confirm your work with R.

Solution

First, find the gradient. For 𝜏(𝑎, 𝑏) = 𝑎/𝑏,

∇𝜏(𝑎, 𝑏) = [
𝜕

𝜕𝑎(𝑎/𝑏)
𝜕
𝜕𝑏(𝑎/𝑏)

] = [1/𝑏
− 𝑎/𝑏2] .

Plugging in (̂𝑎, ̂𝑏) = (2, 1), we have ∇𝜏(̂𝑎, ̂𝑏) = [1
−2].

Now do the required matrix multiplication.

V̂ar[𝜏(̂𝜃)] ≈
∇𝜏(̂𝜃)⊤

⏞[1 −2]([1 1
2

1
2 1]

⏟
V̂ar(̂𝜃)

[1
−2]

⏟
∇𝜏(̂𝜃)

)

= [1 −2] [1 ⋅ 1 + 1
2 ⋅ (−2)

1
2 ⋅ 1 + 1 ⋅ (−2)] = [1 −2] [0

−1.5] = 0 + 3 = 3.

Thus V̂ar[̂𝜏] = 3 and ŜE(̂𝜏) =
√

3.

We can confirm our work with R.

given values
a_hat <- 2
b_hat <- 1
V_hat <- matrix(c(1, 1/2,

1/2, 1), nrow = 2, byrow = TRUE)

gradient at (a_hat, b_hat) for tau(a,b) = a/b

16

grad <- c(1 / b_hat, -a_hat / b_hat^2) # c(1, -2)

delta method
var_tau_hat <- grad %*% V_hat %*% grad
se_tau_hat <- sqrt(var_tau_hat)

var_tau_hat # 3

[,1]
[1,] 3

se_tau_hat # sqrt(3)

[,1]
[1,] 1.732051

Exercise 9 (𝛼, 𝛽) to SD

In the notes, we saw how to use the invariance principle and the delta method to obtain an
ML estimate of the mean 𝜇 and its SE from ML estimates of 𝛼 and 𝛽 and their estimated
covariance matrix.

Similarly, use the invariance principle and the delta method to find an ML estimate of the
SD 𝜎 and its SE for the batting_average variable in Lahman’s data. Recall that 𝜎 =

√ 𝛼𝛽
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) for the beta distribution. Use a numerical gradient.

Solution.

First, find the ML estimates of 𝛼 and 𝛽 and estimate their covariance.

log-likelihood function (using dbeta)
beta_ll_fn <- function(theta, y) {
alpha <- theta[1]
beta <- theta[2]
sum(dbeta(y, shape1 = alpha, shape2 = beta, log = TRUE))

}

function to fit beta model
est_beta <- function(y) {
est <- optim(

17

par = c(2, 2), # decent starting values
fn = beta_ll_fn,
y = y,
control = list(fnscale = -1),
method = "BFGS",
hessian = TRUE

)

info_obs <- -est$hessian # observed information (note the negative)
var_hat <- solve(info_obs) # covariance matrix estimate

if (est$convergence != 0) print("Model did not converge!")

list(theta_hat = est$par, var_hat = var_hat)
}

load packages
library(tidyverse)
library(Lahman) # data from Lahman's baseball database

create data frame with batting average
bstats <- battingStats() |>
filter(yearID == 2023, AB >= 100) |> # 2023; at least 100 AB
transmute(player_id = playerID, batting_average = BA) |>
drop_na() |>
arrange(desc(batting_average))

estimate beta model using the batting average data
fit <- est_beta(bstats$batting_average)
fit$theta_hat

[1] 37.07655 114.92550

fit$var_hat

[,1] [,2]
[1,] 5.964783 18.40870
[2,] 18.408705 57.83667

To find 𝜎̂ plug (̂𝛼, ̂𝛽) into 𝜎 = 𝜏(𝛼, 𝛽).

18

compact notation for readability (matches the notes)
a <- fit$theta_hat[1] # alpha_hat
b <- fit$theta_hat[2] # beta_hat

sigma_hat via invariance property
sigma_hat <- sqrt((a*b) / ((a + b)^2 * (a + b + 1)))
sigma_hat

[1] 0.03471841

We use a numerical gradient for

𝜏(𝜃) = 𝜎(𝛼, 𝛽) = √ 𝛼𝛽
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1).

Recall the delta method V̂ar[𝜏(̂𝜃)] ≈ ∇𝜏(̂𝜃)⊤V̂ar(̂𝜃)∇𝜏(̂𝜃). Here, we use a numerical ∇𝜏(̂𝜃)
computed using numDeriv::grad().

library(numDeriv) # for numerical gradients

define tau(theta) = sigma(alpha, beta)
sigma_fn <- function(theta) {
a <- theta[1]; b <- theta[2]
sqrt((a*b) / ((a + b)^2 * (a + b + 1)))

}

numerical gradient of tau at (a, b)
grad_sigma <- grad(func = sigma_fn, x = fit$theta_hat)
grad_sigma # 2 x 1 gradient vector evaluated at (a, b)

[1] 0.0001263342 -0.0001908174

delta method variance and SE
var_hat_sigma <- t(grad_sigma) %*% fit$var_hat %*% grad_sigma
se_hat_sigma <- sqrt(var_hat_sigma)

var_hat_sigma

[,1]
[1,] 1.313558e-06

19

se_hat_sigma

[,1]
[1,] 0.001146105

Exercise 10 Turnout rates

Load a tibble version of the 2024 turnout data from the UF Election Lab into R.

Model the proportion of the voting-eligible population that voted using a beta distribution.
Estimate the parameters of the beta distribution 𝛼 and 𝛽 as well as the mean 𝜇 = 𝛼

𝛼+𝛽 and
the SD 𝜎 = √ 𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1) }$. Use a parametric bootstrap to estimate the SE of each.

Solution

load packages
library(tidyverse)
library(tinytable)

load data as tibble
turnout_2024 <- tribble(
~state, ~vep_turnout,
"Alabama", 0.5893,
"Alaska", 0.6378,
"Arizona", 0.6360,
"Arkansas", 0.5348,
"California", 0.6206,
"Colorado", 0.7314,
"Connecticut", 0.6708,
"Delaware", 0.6702,
"District of Columbia", 0.6357,
"Florida", 0.6671,
"Georgia", 0.6826,
"Hawaii", 0.5027,
"Idaho", 0.6344,
"Illinois", 0.6325,
"Indiana", 0.5869,
"Iowa", 0.7078,
"Kansas", 0.6318,
"Kentucky", 0.6219,
"Louisiana", 0.6077,

20

https://gist.github.com/carlislerainey/fda3b4eb7e95d50949a445d9ae7f02c8
https://election.lab.ufl.edu/2024-general-election-turnout/

"Maine", 0.7424,
"Maryland", 0.6930,
"Massachusetts", 0.6803,
"Michigan", 0.7464,
"Minnesota", 0.7635,
"Mississippi", 0.5745,
"Missouri", 0.6434,
"Montana", 0.6820,
"Nebraska", 0.6796,
"Nevada", 0.6580,
"New Hampshire", 0.7405,
"New Jersey", 0.6724,
"New Mexico", 0.5957,
"New York", 0.6044,
"North Carolina", 0.7032,
"North Dakota", 0.6310,
"Ohio", 0.6539,
"Oklahoma", 0.5328,
"Oregon", 0.7194,
"Pennsylvania", 0.7143,
"Rhode Island", 0.6328,
"South Carolina", 0.6214,
"South Dakota", 0.6400,
"Tennessee", 0.5761,
"Texas", 0.5657,
"Utah", 0.6415,
"Vermont", 0.7089,
"Virginia", 0.7119,
"Washington", 0.7017,
"West Virginia", 0.5546,
"Wisconsin", 0.7664,
"Wyoming", 0.6128

)

beta log-likelihood
beta_ll_fn <- function(theta, y) {
alpha <- theta[1]
beta <- theta[2]
ll <- sum(dbeta(y, shape1 = alpha, shape2 = beta, log = TRUE))
return(ll)

}

21

create a function to fit the beta model
est_beta <- function(y) {
est <- optim(par = c(3, 3), fn = beta_ll_fn, y = y,

control = list(fnscale = -1),
method = "BFGS") # for >1d problems

if (est$convergence != 0) print("Model did not converge!")
res <- list(est = est$par)
return(res)

}

ml estimates
ml_est <- est_beta(turnout_2024$vep_turnout)
a <- ml_est$est[1]; a # alpha

[1] 39.59784

b <- ml_est$est[2]; b # beta

[1] 21.29332

a / (a + b) # mean; using a and b for readability

[1] 0.6503053

sqrt((a * b) / ((a + b)^2 * (a + b + 1))) # SD

[1] 0.06061623

parametric bootstrap
n_bs <- 100
bs_alpha <-
bs_beta <-
bs_mu <-
bs_sigma <-
numeric(n_bs) # containers for the estimates

for (i in 1:n_bs) {
bootstrap sample
bs_y <- rbeta(length(y), shape1 = ml_est$est[1], shape2 = ml_est$est[2])

22

fit model to bootstrapped sample
bs_est <- est_beta(bs_y)

store ml estimates of alpha and beta for readability below
bs_a <- bs_est$est[1]
bs_b <- bs_est$est[2]

compute and store all qis
bs_alpha[i] <- bs_a
bs_beta[i] <- bs_b
bs_mu[i] <- bs_a / (bs_a + bs_b)
bs_sigma[i] <- sqrt((bs_a * bs_b) / ((bs_a + bs_b)^2 * (bs_a + bs_b + 1)))

}

bootstrap SEs
se_alpha <- sd(bs_alpha)
se_beta <- sd(bs_beta)
se_mu <- sd(bs_mu)
se_sigma <- sd(bs_sigma)

tinytable (avoid underscores in visible labels)
tab_df <- tibble::tibble(
Parameter = c("$\\alpha$", "$\\beta$", "$\\mu$", "$\\sigma$"),
`ML estimate` = c(a_hat = a,

b_hat = b,
mu_hat = a / (a + b),
sigma_hat = sqrt((a * b) / ((a + b)^2 * (a + b + 1)))),

`Bootstrap SE`= c(se_alpha, se_beta, se_mu, se_sigma)
)
tt(
tab_df,
digits = 3,
caption = "Beta model: ML estimates and parametric-bootstrap standard errors.",

)

23

Table 1: Beta model: ML estimates and
parametric-bootstrap standard er-
rors.

Parameter ML estimate Bootstrap SE
𝛼 39.5978 1.4765
𝛽 21.2933 0.78647
𝜇 0.6503 0.00209
𝜎 0.0606 0.00112

Exercise 11 duration

Part 1. Parametric models.

Model duration in the coalition data set (from the brglm2 package) using three different
distributions: an exponential distribution, a Weibull distribution, and a log-normal distribu-
tion.

For each distribution:

1. Estimate the parameter(s) using maximum likelihood.
2. Estimate the covariance matrix.
3. Estimate the mean using the invariance property.
4. Estimate the SE using the delta method.

Hint: Use optim() and numDeriv::grad(). Complete each step for the exponential model,
then copy-and-paste the code and make the needed changes for the Weibull and log-normal.

Part 2. Classical estimate.

Compute the classical mean and SE estimates by taking the average ̂𝜇 = avg(𝑦) and the
standard error ŜE(̂𝜇) = SD(𝑦)√

𝑁
.

Part 3.

Compare these four estimates and their standard error estimates. What stands out? Ex-
plain.

Some Background.

When we model duration data, we often focus on the hazard function, which describes the
relative chance of an event at time 𝑡, given that the unit has survived until 𝑡. The hazard tells
us how the risk of failure changes with time.

24

The exponential distribution is the simplest model. The density is

𝑓(𝑡 ∣ 𝜆) = 𝜆𝑒−𝜆𝑡, 𝑡 > 0, 𝜆 > 0,

and the mean is 𝔼[𝑇] = 1/𝜆. The hazard is ℎ(𝑡) = 𝜆, which is constant over time. This means
the chance of failure in the next instant does not depend on how long the unit has lasted so
far. This “memoryless” property makes the exponential convenient, but often unrealistic.

The Weibull distribution generalizes the exponential by allowing the hazard to change with
time. The density is

𝑓(𝑡 ∣ 𝑘, 𝜆) = 𝑘
𝜆 (𝑡

𝜆)
𝑘−1

exp[− (𝑡
𝜆)

𝑘
] , 𝑡 > 0, 𝑘, 𝜆 > 0,

and the mean is 𝔼[𝑇] = 𝜆 Γ(1 + 1/𝑘). The hazard is

ℎ(𝑡) = 𝑘
𝜆 (𝑡

𝜆)
𝑘−1

.

When 𝑘 = 1, this reduces to the exponential with a constant hazard. If 𝑘 > 1, the hazard
increases with time, which might capture processes like aging or wear-out. If 𝑘 < 1, the hazard
decreases with time, which might represent situations where early failures are more likely. This
flexibility makes the Weibull especially useful.

The lognormal distribution assumes that the log of the durations is normally distributed. The
density is

𝑓(𝑡 ∣ 𝜇, 𝜎) = 1
𝑡𝜎

√
2𝜋 exp(−(ln 𝑡 − 𝜇)2

2𝜎2) , 𝑡 > 0, 𝜎 > 0,

and the mean is 𝔼[𝑇] = exp(𝜇 + 1
2𝜎2). The hazard is non-monotone: it starts low, rises for a

while, and then falls. This “hump-shaped” hazard works well when events are most likely after
some waiting time, but less likely if they haven’t occurred by then—for example, the adoption
of a new technology or the incubation period of a disease.

Solution.

load packages
library(brglm2)
library(numDeriv)

data
data("coalition", package = "brglm2")
y <- coalition$duration

1) Exponential model.

25

log-likelihood
log_lik <- function(lambda, y) {
sum(dexp(y, rate = lambda, log = TRUE))

}

find ml estimate
fit <- optim(
par = 1,
fn = log_lik,
y = y,
method = "BFGS",
control = list(fnscale = -1),
hessian = TRUE

)

Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced
Warning in dexp(y, rate = lambda, log = TRUE): NaNs produced

lambda_hat <- fit$par

covariance
info_obs <- -fit$hessian
var_hat <- solve(info_obs)

invariance property + delta method

26

tau <- function(lambda) 1 / lambda
mean_hat_exp <- tau(lambda_hat)
g <- grad(tau, x = lambda_hat) # 1x1 gradient
var_mean <- t(g) %*% var_hat %*% g
se_mean_exp <- sqrt(var_mean)

print key results
lambda_hat

[1] 0.0542343

mean_hat_exp

[1] 18.43851

se_mean_exp

[,1]
[1,] 1.040192

2) Weibull model.

log-likelihood
log_lik <- function(theta, y) {
k <- theta[1]
s <- theta[2]
sum(dweibull(y, shape = k, scale = s, log = TRUE))

}

find ml estimate
fit <- optim(
par = c(1, 1),
fn = log_lik,
y = y,
method = "BFGS",
control = list(fnscale = -1),
hessian = TRUE

)

27

Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced
Warning in dweibull(y, shape = k, scale = s, log = TRUE): NaNs produced

k_hat <- fit$par[1]
s_hat <- fit$par[2]

covariance
info_obs <- -fit$hessian
var_hat <- solve(info_obs)

invariance property + delta method
tau <- function(theta) {
k <- theta[1]
s <- theta[2]
s * gamma(1 + 1/k)

}
mean_hat_weib <- tau(c(k_hat, s_hat))
g <- numDeriv::grad(tau, x = c(k_hat, s_hat))
var_mean <- t(g) %*% var_hat %*% g
se_mean_weib <- sqrt(var_mean)

print key results

28

k_hat

[1] 1.138367

s_hat

[1] 19.28594

mean_hat_weib

[1] 18.40969

se_mean_weib

[,1]
[1,] 0.9138076

3) Log-normal model.

log-likelihood
log_lik <- function(theta, y) {
mu <- theta[1]
sig <- theta[2]
sum(dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE))

}

find ml estimate
fit <- optim(
par = c(0, 1),
fn = log_lik,
y = y,
method = "BFGS",
control = list(fnscale = -1),
hessian = TRUE

)

29

Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced
Warning in dlnorm(y, meanlog = mu, sdlog = sig, log = TRUE): NaNs produced

mu_hat <- fit$par[1]
sig_hat <- fit$par[2]

covariance
info_obs <- -fit$hessian
var_hat <- solve(info_obs)

invariance property + delta method
tau <- function(theta) {
mu <- theta[1]
sig <- theta[2]
exp(mu + 0.5 * sig^2)

}
mean_hat_lnorm <- tau(c(mu_hat, sig_hat))
g <- numDeriv::grad(tau, x = c(mu_hat, sig_hat))
var_mean <- t(g) %*% var_hat %*% g
se_mean_lnorm <- sqrt(var_mean)

print key results
mu_hat

[1] 2.4355

sig_hat

[1] 1.147172

mean_hat_lnorm

[1] 22.05417

30

se_mean_lnorm

[,1]
[1,] 1.838451

4) Classical.

classical mean and SE of coalition$duration
mean_classical <- mean(coalition$duration)
se_classical <- sd(coalition$duration) / sqrt(length(coalition$duration))

mean_classical

[1] 18.4379

se_classical

[1] 0.8553566

A summary table.

library(tinytable)

collect results including classical
res <- data.frame(
Model = c("Classical", "Exponential", "Weibull", "Log-normal"),
Mean = c(mean_classical, mean_hat_exp, mean_hat_weib, mean_hat_lnorm),
SE = c(se_classical, se_mean_exp, se_mean_weib, se_mean_lnorm)

)

format nicely
tt(
res,
digits = 4,
align = "lrr"

)

31

Model Mean SE
Classical 18.44 0.8554
Exponential 18.44 1.0402
Weibull 18.41 0.9138
Log-normal 22.05 1.8385

However, while these models make different parametric assumptions, they all fit the observed
durations moderately well. At least none severely deviates from the observed pattern.

0.00

0.02

0.04

0.06

0 20 40 60
Eruption duration (minutes)

D
en

si
ty

Model

Exponential

Log−normal

Weibull

Fitted Distributions vs. Histogram of Durations

Exercise 12 Two CIs

Consider a simple Bernoulli model for 𝑦 ∈ {0, 1} with parameter 𝜋 ∈ [0, 1]. Create a small
sample with a rare event: take 𝑁 = 20 trials with exactly one success.

Part 1. Wald confidence interval.

Compute the ML estimate ̂𝜋 = avg(𝑦), the Wald SE ŜE(̂𝜋) = √ ̂𝜋(1 − ̂𝜋)/𝑁 , and the usual
95% Wald confidence interval ̂𝜋 ± 1.96 ⋅ ŜE(̂𝜋). What do you notice about the interval relative
to the parameter space [0, 1]?
Part 2. Parametric bootstrap confidence interval.

32

Use a parametric bootstrap to obtain a 95% percentile confidence interval for 𝜋 based on the
fitted model Bernoulli(̂𝜋). Compare the bootstrap interval with the Wald interval. What
stands out? Briefly explain.

Hint: For the bootstrap, repeatedly simulate 𝑦∗(𝑏)
1 , … , 𝑦∗(𝑏)

𝑁
𝑖𝑖𝑑∼ Bernoulli(̂𝜋), recompute ̂𝜋∗(𝑏) =

avg(𝑦∗(𝑏)), and then take the empirical 2.5th and 97.5th percentiles of { ̂𝜋∗(𝑏)}.

Solution.

set.seed(1)

data: N = 20 with exactly one success
N <- 20
y <- c(1, rep(0, N - 1)) # rare event sample
y <- sample(y) # shuffle (irrelevant, but tidy)

ml estimate and wald 95%ci
pi_hat <- mean(y)
se <- sqrt(pi_hat * (1 - pi_hat) / N)
wald_ci <- pi_hat + c(-1, 1) * 1.96 * se

pi_hat

[1] 0.05

se

[1] 0.04873397

wald_ci

[1] -0.04551858 0.14551858

The Wald interval extends below 0, which is outside the parameter space [0, 1].

parametric bootstrap w/ percentile 95% ci
n_bs <- 2000
bs_est <- numeric(n_bs) # a container for the estimates
for (i in 1:n_bs) {
bs_y <- rbinom(20, size = 1, prob = pi_hat)
bs_est[i] <- mean(bs_y)

33

}

print(quantile(bs_est, probs = c(0.025, 0.975)), digits = 2) # 95% ci

2.5% 97.5%
0.00 0.15

The Wald interval uses a normal approximation centered at ̂𝜋 with variance estimated by
Fisher information. With extreme ̂𝜋 near zero and small 𝑁 , this approximation is poor and
the lower bound of the CI can dip below 0. In contrast, the parametric bootstrap respects the
model’s support by construction (every ̂𝜋∗(𝑏) ∈ [0, 1]), so the percentile interval stays within
[0, 1] and typically provides more reasonable coverage in this setting.

34

	Mean v. median
	Asymptotics as approximations
	German Tank Problem
	Jensen's Inequality
	Poisson
	operations
	Exponential
	Delta method, by hand
	(\alpha, \beta) to SD
	Turnout rates
	duration
	Two CIs

