Week 2 Exercises

Exercise 1 Bernoulli grid search

Suppose you design a Bernoulli experiment that generates successes or failures with an un-
known probability 7. You want to estimate 7, so you run the experiment three times and get
the outcomes y <- c(0, 1, 0), where 0 is a failure and 1 is a success.

Use ML to estimate pi. But don’t find the mazimum analytically or with a hill-climbing
algorithm. Instead, use a grid search to find the maximum. Use seq() to create a range of
ten to twenty candidate values for w, compute the log-likelihood for each candidate value, and
locate the candidate value that produces the largest log-likelihood. Report your results in
figure and a table.

Exercise 2 Equivalence of numerical and closed-form solutions

We found that the sample average is the ML estimate of the parameter A of the Poisson
distribution. For the datasety <- c(12, 7, 9, 12, 10) show that optimizing the Poisson
log-likelihood function with optim() produces the same answer and the closed-form solution.

Exercise 3

DeGroot and Schervish, q. 9, p. 425. Suppose a distribution f(x;6) = 021 for0 <z < 1
and 6 > 0. Find the ML estimator of 6.

Exercise 4

Suppose you have a binary outcome y <- c(0, 1, 0, 1, 1, 1, 0). Suppose you want to
estimate the mean of this distribution. You’d normally model the binary outcome with a
Bernoulli distribution and estimate the parameter Bernoulli parameter = with ML. But instead



of using the Bernoulli distribution, you model these data with a normal distribution. What
would your estimate of the mean be? What if you used the Poisson? Exponential? FExplain.

No matter what distribution we use, we obtain the identical estimate. Not the same in expec-
tation (over a large number of imaginary repetitions). Not the same asymptotically (as the
sample size grows large). The exact same number every time. This mean that any property
that the Bernoulli estimator has, the others have as well. If the Bernoulli estimator is con-
sistent, then the other three estimators are consistent as well. It’s also worth noting that all
three are unbiased estimators as well.

This illustrates an important point. The quality of an estimator doesn’t always depend on the
correctness of all parts of the model. It often depends on what quantity of interest you are
targeting.

Exercise 5

Let 6 be the ML estimate of . Suppose we are interested in estimating ¢ = 62. What is the
ML estimate of ¢?

Exercise 6 Uniform distribution

Suppose a discrete uniform distribution from 0 to K. The pdf is f(z; K) = % for z €
{0,1,..., K'}. Suppose I have three samples from the distribution: 276, 159, and 912.

a. Find the ML estimate of K. Hint: The log-likelihood is discontinuous, so the usually
optimization routine might mislead you. But the maximum is immediately apparent once
you write out the likelihood.

b. Find the method of moments estimate of K. Hint: The mean of this uniform distribution

K

18 5

c. Discuss any problems you notice with each estimator.

Exercise 7 Exponential model

The exponential distribution has pdf f(t;A) = e for ¢ > 0 and A > 0. We sometimes
use this distribution to model time spells ¢, such as the time until an event or the time
between events. For example, some political scientists are interested in how long a government
lasts after a government formation in a parliamentary system. We might use an exponential
distribution to model this time or “duration.”



a. Show that the cdf of the exponential distribution is F(t;\) = Pr(T < ;) = 1 — e M.
Use the cdf to find the survival function S(t;A\) = Pr(T > t;\) = 1 — F(t;A). How
can we interpret the survival function (i.e., for input ¢, what does the survival function
return)?

b. Find Pr(T > t+ s | T > s) using the survival function and the definition of conditional
probability. Compare P(T >t) to P(T' >t+s|T > s). What do you notice? Interpret
the result. Using a specific political outcome as a concrete example (e.g., time between
major protests, government durations, time between constitutional amendments), what
does this property say about the time until an event occurs, given that it has been some
given time since an event occurred?

c. Suppose we collect N random samples ¢ = {t;,t,,...,t5} and model each draw as an
exponential random variable random. Find the ML estimator of .

d. Find an ML estimator for the mean, which is %

Optional: Show that the mean of the exponential distribution is % This requires integration

by parts.

Exercise 8 Simulating memorylessness in R

Use R to simulate 10,000 draws from an exponential distribution with rate A = 1. Each of the
10,000 values represents a duration (i.e., time until an event occurs). For

set.seed(123)
durations <- rexp(10000, rate = 1)

For durations larger than five, compute the remaining duration.

remaining_durations <- durations[durations > 5] - 5

Use a histogram or plots of the ECDF to compare the distribution of remaining durations
to the original durations. Explain the similarity, why it’s expected, and why it’s important.

Exercise 9 The faithful Data Set

The faithful dataset in base R contains 272 observations of eruptions (eruption time in
minutes) and waiting (waiting time to next eruption in minutes) for the Old Faithful geyser
in Yellowstone National Park. See ?faithful for more details.



glimpse(faithful)

Rows: 272
Columns: 2
$ eruptions <dbl> 3.600, 1.800, 3.333, 2.283, 4.533, 2.883, 4.700, 3.600, 1.95~
$ waiting <dbl> 79, 54, 74, 62, 85, 55, 88, 85, 51, 85, 54, 84, 78, 47, 83, ~

Model eruptions as an exponential distribution. Estimate the rate and mean. Use the
predictive distribution to evaluate the fit of the exponential model to these data.

Optional. Repeat for waiting

Exercise 10 Herron's hockey data set

Herron’s hockey data set contains data on the time between hits' in the regulation periods of
the 82 regular season games for the Chicago Blackhawks. The data are available via GitHub
Gist here. You can load the data directly from the web, but you need to click “Raw” and copy
the URL for the raw CSV data. Model seconds_btw_hits as an exponential distribution. Es-
timate the rate and mean. Use the predictive distribution to evaluate the fit of the exponential
model to these data. Discuss whether you find the fit surprising and explain why.

# load data directly from web
hockey <- read_csv("https://gist.githubusercontent.com/carlislerainey/0bc3018cd2377022fd045e

# quick look

glimpse (hockey)

Rows: 1,175

Columns: 5

$ game_id <dbl> 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, ~
$ period_id <dbl> 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,1, 1,1, 1, 2, ~
$ time_of_hit <chr> "2b58", "2M 8s", "2M 58s", "3M 8s", "4M 138", ~
$ seconds_played_in_season <dbl> 25, 128, 178, 188, 253, 560, 643, 1407, 1825,~
$ seconds_btw_hits <dbl> NA, 103, 50, 10, 65, 307, 83, 764, 418, 535, ~

'From Wikipedia, a hit is defined as: “Intentionally initiated contact with the player possessing the puck that
causes that player to lose possession of the puck. Loss of possession may or may not involve a turnover. If
the contact results in a penalty, no hit is awarded.”


https://gist.github.com/carlislerainey/0bc3018cd2377022fd045e1c932110a2
https://en.wikipedia.org/wiki/Ice_hockey_statistics

Exercise 11 The location-scale t distribution

Some Theory

The location-scale t distribution is a flexible model for data that may exhibit heavier-than-
normal tails. This is can be helpful when your data have more extreme observations than
expected with a normal model.

The pdf of the location-scale t distribution is
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where I'(+) is the gamma function, u is the location parameter (which shifts the distribution
much like the mean of the normal distribution), o is the scale parameter (which changes the
spread of the distribution much like the SD parameter of the normal distribution), and v con-
trols the heaviness of the tails—a smaller value of v produces a heavier tails and the distribution
converges to the normal distribution as v — oco. For v > 10, the ¢ and normal distributions
are very similar. We refer to the special case of v = 1 as the Cauchy distribution.

The figure below compare the location-scale ¢ and normal distributions. As x moves away
from the center of the distribution, notice that that the ¢ density remains well above zero for
much longer when the df is less than five or so.
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These heavy tails make the location-scale ¢ distribution useful for robust modeling, where we
want to capture central tendencies while being less sensitive to unusual values.

In R, we have the metRology: :dt.scaled() function that computes the density or likelihood.
Some important things to note about this function: the argument mean refers to the location
parameter u, though p isn’t always a mean. The argument sd refers to the scale parameter o,
though o isn’t the SD. The argument df refers to the parameter v.

Some Questions

a. As a baseline, model the percentage GDP growth in the data below as using a normal
model. Use the predictive distribution to assess the fit. What does the normal model
miss?

b. Asan alternative, try a location-scale ¢ model. Use optim() to estimate the parameters p,
o, and v. Compare the predictive distribution for the ¢ model to the normal model. (The
metRology::dt.scaled(..., log = TRUE) function will compute the log-likelihood for
the individual observations, and metRology: :rt.scaled() will draw samples.)

c¢. What is the ML estimate of the degrees of freedom parameter? Discuss it’s importance.
What patterns can the t distribution capture that the normal distribution cannot?



Exercise 12 Corrupted data

For the WDI data above, corrupt the data by replacing one observation with a data entry
error (something like pct_gdp_growth of 10,000 and re-fit the normal and ¢ models. How did
the estimates of the location of each change? Why? Is this a desirable property?

Exercise 13 Optional: R function to simulate the predictive distribution

Note: This is a challenging function to write, so only attempt this problem if you are comfortable
with writing other, simpler functions.

We'’ve use my code to simulate the predictive distribution a few times and combine them
together with the observed data set really long and repetitive. In his excellent R for Data
Science 2(3), Hadley Wickham writes: “A good rule of thumb is to consider writing a function
whenever you’ve copied and pasted a block of code more than twice (i.e. you now have three
copies of the same code).”

The inputs might be (1), the name of the outcome variable, (2) an observed data set, (3) a
function to simulate the fake data sets, and (4) the number of fake data sets to generate.

sim_fake <- function(variable, observed, sim fn, n = 5) {

}

Exercise 14 Reflection

The exercises above ask you to compare fitted distributions to observed data. In some cases,
we saw close correspondence between the models and the data. In other cases, the two di-
verged substantially. You may have noticed that even the poorly fitting distributions tend to
have the same mean as the observed data. Is it important that our models mimic the other
features of the data? To what extent is the mean the most important feature (or the only
important feature) of the distribution? When and why might we care about the other features
substantively (e.g., SD, heavy tails, memorylessness)? Why might we care about these other
features statistically?


https://r4ds.hadley.nz/functions.html
https://r4ds.hadley.nz/functions.html
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