Week 2 Exercises

Exercise 1 Bernoulli grid search

Suppose you design a Bernoulli experiment that generates successes or failures with an un-
known probability 7. You want to estimate 7, so you run the experiment three times and get
the outcomes y <- c(0, 1, 0), where 0 is a failure and 1 is a success.

Use ML to estimate pi. But don’t find the mazimum analytically or with a hill-climbing
algorithm. Instead, use a grid search to find the maximum. Use seq() to create a range of
ten to twenty candidate values for w, compute the log-likelihood for each candidate value, and
locate the candidate value that produces the largest log-likelihood. Report your results in
figure and a table.

Solution

First, create a function to compute the log-likelihood.

create function to compute log-likelihood
compute_log_lik <- function(pi, y) {
k <= sum(y)
N <- length(y)
log_lik <- k*log(pi) + (N - k)*log(l - pi)
return(log_lik)
}

Now compute the log-likelihood for 11 evenly spaced values of 7 from 0 to 1. It similarly shows
that the log-likelihood is maximized (among the candidate values) when 7 = 0.4.

load packages
library(tidyverse)

create data set
y <- c(o0, 1, 0)

Candidate Value Log-Likelihood

0 -Inf

0.1 -2.51
0.2 -2.06
0.3 -1.92
0.4 -1.94
0.5 -2.08
0.6 -2.34
0.7 -2.76
0.8 -3.44
0.9 -4.71
1 -Inf

create candidate values
pi <- seq(0, 1, length.out = 11)

compute log-likelihood for each candidate value
log_likelihood <- compute_log_lik(pi, y)

combine candidates and their log-likelihoods into df
df <- data.frame(pi, log_likelihood)

make a table

df [>

rename ("Candidate Value" = pi,
"Log-Likelihood" = log_likelihood) |[>

tinytable: :tt(digits = 3)

The largest value of the log-likelihood occurs at m = 0.4. I knew it would be 0.3 or 0.4 because
the ML estimate is the sample mean and the sample mean is 0.333 in this case.

The figure below plots the log-likelihood for each candidate value. Again, we see that 0.4
produces the largest log-likelihood (among the candidate values).

plot log-likelihoods
ggplot(df, aes(x = pi, y = log_likelihood)) +
geom_line ()

log_likelihood

0.00 0.25 0.50 0.75 1.00
pi

Exercise 2 Equivalence of numerical and closed-form solutions

We found that the sample average is the ML estimate of the parameter A of the Poisson
distribution. For the datasety <- c(12, 7, 9, 12, 10) show that optimizing the Poisson
log-likelihood function with optim() produces the same answer and the closed-form solution.

Solution

data set
y <= c(12, 7, 9, 12, 10)

First, the closed-form solution.

closed-form maximum
mean (y)

[1] 10

Next, the numerical solution.

create log-likelihood function to maximize
11_pois <- function(par, y) {

sum(dpois(y, lambda = par, log = TRUE))
b

maximize the log-likelihood function
est <- optim(par = 1,
fn = 11_pois,
y=7,
control = list(fnscale = -1),
method = "Brent",
lower = 0, upper = 100)

print lambda that maximizes log-likelihood
est$par

[1] 10

Exercise 3

DeGroot and Schervish, q. 9, p. 425. Suppose a distribution f(x;60) = 0z for0 <z < 1
and 6 > 0. Find the ML estimator of 6.

Solution
We have the pdf f(z;0) =0z, 0<xz<1, 6>0.

Begin by writing the likelihood function:

Take the log of the likelihood:

log L(6) = log(6") + log ([20"

N
= Nlogf+ (6 —1) Zlogwi
i1
Take the derivative with respect to 6:

d N
S logL(9) = o + > logz,
75 108 (0) 7 + 2 ogx;

Set the derivative equal to 0 and solve for 0:

N
5 =— Z log x;
~ N
0 = =
- Zizl IOg Z;
So the maximum likelihood estimator is 6 = 7211\2 T

Exercise 4

Suppose you have a binary outcome y <- c(0, 1, 0, 1, 1, 1, 0). Suppose you want to
estimate the mean of this distribution. You’d normally model the binary outcome with a
Bernoulli distribution and estimate the parameter Bernoulli parameter 7 with ML. But instead
of using the Bernoulli distribution, you model these data with a normal distribution. What
would your estimate of the mean be? What if you used the Poisson? Exponential? Explain.

Solution
Estimate of Mean (Using

DistributionParameter(s) ML Estimates of Parameters Invariance Property)

Bernoulli 7 T =avg(y) 7 = avg(y) (No change needed,
because E(Y') =)

Normal — p, o2 fi = avg(y), 62 = var(y) fi = avg(y)

Poisson A A = avg(y) A = avg(y)

Exponential A A = 1/avg(y) 1/X = avg(y)

No matter what distribution we use, we obtain the identical estimate. Not the same in expec-
tation (over a large number of imaginary repetitions). Not the same asymptotically (as the
sample size grows large). The exact same number every time. This means that any property
that the Bernoulli estimator has, the others have as well. If the Bernoulli estimator is con-
sistent, then the other three estimators are consistent as well. It’s also worth noting that all
three are unbiased estimators as well.

This illustrates an important point. The quality of an estimator doesn’t always depend on the
correctness of all parts of the model. It often depends on what quantity of interest you are
targeting.

Exercise 5

Let 8 be the ML estimate of 6. Suppose we are interested in estimating 1) = 62. What is the
ML estimate of ¢?

Solution

By the invariance property, the MLE of a function of a parameter is the function of the
MLE:

i

This allows us to avoid deriving a new likelihood for 1 directly. Instead, we just plug the ML
estimate of # into the transformation.

Exercise 6 Uniform distribution

Suppose a discrete uniform distribution from 0 to K. The pmf is f(z;K) = ﬁ,

{0,1,..., K}. Suppose I have a sample of size 3 from the distribution: 276, 159, and 912.

T €

a. Find the ML estimate of K. Hint: The log-likelihood is discontinuous, so the usual
optimization routine might mislead you. But the mazimum is immediately apparent once
you write out the likelihood.

b. Find the method of moments estimate of K. Hint: The mean of this uniform distribution
18 % Set the sample mean equal to the model mean and solve.
c. Discuss any problems you notice with each estimator.

Solution
Part (a)

The pmf for the uniform distribution from 0 to K is %H for x € {0, 1, ..., K} and 0 otherwise.
Thus the likelihood function is

N 1 N
L(K) = =
(K) };[1 K+1 (K + 1>
if all values of = fall in {0,1,..., K}, and 0 if any values of x fall outside. To maximize this

expression, we need K as small as possible, subject to K > max(z). Hence, Ky p = max(z).
Part (b)

The mean of this uniform distribution is % To find the method of moments estimator K,
we set the sample mean equal to the distribution mean avg(z) = % Solving gives K5, =
2 - avg(x).
Part (c)

These estimators are both interesting, but neither is very satisfying on its face by simple
inspection.

e The ML estimator is the smallest logically possible value of K. Intuitively, it may seem
better to guess “a little” higher than the largest data point.

e The MM estimator is just twice the average. This means that our estimate can fall below
the largest observation. For example, the MM estimate for the given data is 898, but we
observed a value of 912, so K cannot be smaller than 912.

Exercise 7 Exponential model

The exponential distribution has pdf f(t;A) = Ae™™ for ¢ > 0 and A > 0. We sometimes
use this distribution to model time spells ¢, such as the time until an event or the time
between events. For example, some political scientists are interested in how long a government
lasts after a government formation in a parliamentary system. We might use an exponential
distribution to model this time or “duration.”

a. Show that the cdf of the exponential distribution is F(t;\) = Pr(T < ;) = 1 — e M,
Use the cdf to find the survival function S(t;\) = Pr(T > t;\) = 1 — F(t; A). How
can we interpret the survival function (i.e., for input ¢, what does the survival function
return)?

b. Find Pr(T" > t+ s | T > s) using the survival function and the definition of conditional
probability. Compare P(T >t) to P(T' >t+s|T > s). What do you notice? Interpret
the result. Using a specific political outcome as a concrete example (e.g., time between
major protests, government durations, time between constitutional amendments), what
does this property say about the time until an event occurs, given that it has been some
given time since an event occurred?

c. Suppose we collect N random samples t = {t;,t,,...,t5} and model each draw as an
exponential random variable random. Find the ML estimator of .

d. Find an ML estimator for the mean, which is %

Optional: Show that the mean of the exponential distribution is % This requires integration

by parts.

Solution

Part (a) To find the cumulative distribution function (cdf) F(t;\) = Pr(T < t) for the
exponential distribution, we need to integrate the pdf from 0 to t. This gives F(t;\) =

K Ae *du. The indefinite integral of e ** w.r.t. wis [e *du = Ste ™" + C. The definite
integral from u =0 to u =1 is

t

t
0 A 0 0

Thus, the cdf is F(t;\) = 1 — e M.

We can subtract the CDF from one to obtain the survival function.

StHAN) =Pr(T>t)=1—-F(t;\) =1—(1—e M) =M

The survival function S(¢;\) outputs the probability that the event has not yet occurred by
time t. (The CDF outputs the probability than an event has occurred). For example, if t = 3
years and S(3; \) = 0.20, then there’s a 20% chance the event will occur after 3 years.

Part (b)

Pr(T>t+s and T>s)
Pr(T>s) But
Pr(T>t+s)
Pr(T>s) *

Using the definition of conditional probability, Pr(T >t + s | T > s) =
when T' > t + s, then T is also greater than s, so Pr(T' >t +s|T > s) =
Substituting in the survival function,

ef)\(t+s) ef)\tef)\s

Pr(T >t+s|T>s5)=———= S =e M
e e"*

This is interesting.. we showed that Pr(7" > t +s | T > s) = Pr(T > t). This means
that distribution of 7" and the distribution of T' | T' > s. Are exactly the same. This is

the memoryless property of the exponential distribution. It means that the probability of
waiting at least ¢ more units of time does not depend on how long you’ve already waited. The
distribution has no “memory” of past events.

Political example: Suppose we use an exponential distribution to model government dura-
tions. If a government has already lasted two years, the chance that the government lasts at
least three more years is the same is the chance it lasted three years in the first place. Both
chances are e 3*. The fact that two years have already passed provides no information about
how much longer the government will last. That’s why we say the exponential distribution is
“memoryless.” (The exponential distribution is the only distribution with this property.)

To illustrate this further, consider human lifespans. If I asked you to guess how much longer
a person will live, you’d definitely want to know their age. The life expectancy is completely
different for someone who is 2, 20, and 80. This is because human lifespans are not memory-
less.

Part (c)

Suppose we observe data t = {t;,t,...,ty}, where each ¢, is drawn independently from an
exponential distribution with unknown rate .

We begin by writing the likelihood function:

Take the log of the likelihood:

log L()\) = log(AN) + log (e*Ath)
N
=NlogA—A> t,

i=1
Take the derivative with respect to A:
d N Y
—log L(\) = — — t,

Set the derivative equal to 0 and solve for A:

Recognizing that > ¢, = N - avg(t), we can simplify:

1
avg(t)

\ =

So the maximum likelihood estimator of A is the reciprocal of the sample average.

Part (d)

By the invariance property ML estimator for the mean u = % of the exponential distribution
1

is simply 1 = % = —— =avg(x).
avg(z)

(Optional)

To find the mean of the exponential distribution, compute:
_ [=\t

E(T) = [the Mdt

This requires integration by parts. Let:

e u=t,s0 du=dt
o dv= e Mdt, sov=—e

Then:
B(T) = —te™™| " + [FeMdt =0+ [§] =

1

So the mean of the exponential distribution is .

10

Exercise 8 Simulating memorylessness in R

Use R to simulate 10,000 draws from an exponential distribution with rate A = 1. Each of the
10,000 values represents a duration (i.e., time until an event occurs). For

set.seed(123)
durations <- rexp(10000, rate = 1)

For durations larger than five, compute the remaining duration.

remaining_durations <- durations[durations > 5] - b5

Use a histogram or plots of the ECDF to compare the distribution of remaining durations
to the original durations. Explain the similarity, why it’s expected, and why it’s important.

Solution

Begin by simulating 10,000 draws from an exponential distribution with rate A = 1. Each
value represents a waiting time (or duration) until an event occurs.

set.seed(123)
durations <- rexp(10000, rate = 1)

Now compute the remaining durations for those observations where the event did not occur
by time 5. If the time is in years, this is asking: “given that we waited 5 years without seeing
the event, how much longer did we need to wait?”

remaining_durations <- durations[durations > 5] - 5

Now compare the distribution of the remaining durations to the original durations.

put simulations in a tidy data frame
df1 <- data.frame(duration = durations,
type = "original")
df2 <- data.frame(duration = remaining_durations,
type = "remaining")
df <- bind_rows(dfi, df2) |>
glimpse ()

11

Rows: 10,060
Columns: 2

$ duration <dbl> 0.84345726, 0.57661027, 1.32905487, 0.03157736, 0.05621098, 0~
$ type <chr> "original", "original", "original", "original", "original", "~

plot the ecdfs
ggplot (df, aes(x = duration, color = type)) +
stat_ecdf ()

1.00 -
0.75-
type
“—
B 0.50- original
()
—— remaining
0.25-
0.00
0.0 25 5.0 7.5
duration

This distribution of remaining_durations is indistinguishable from the original durations!

We know from the theory that the differences are simply due to noise. This occurs because
of the memorylessness of the exponential distribution: the probability of waiting at least t
more units of time does not depend on how long you’ve already waited.

If we’re modeling the time between major protests with an exponential distribution, then
the probability that a protest occurs in the next day is the same whether it’s been 2 days or
20 days since the last protest. For many applications, this memorylessness won’t make sense
and we’ll need a more flexible distribution.

Exercise 9 The faithful data set

The faithful data set in base R contains 272 observations of eruptions (eruption time in
minutes) and waiting (waiting time to next eruption in minutes) for the Old Faithful geyser

12

in Yellowstone National Park. See ?faithful for more details.

glimpse(faithful)

Rows: 272
Columns: 2
$ eruptions <dbl> 3.600, 1.800, 3.333, 2.283, 4.533, 2.883, 4.700, 3.600, 1.95~
$ waiting <dbl> 79, 54, 74, 62, 85, 55, 88, 85, 51, 85, 54, 84, 78, 47, 83, ~

Model eruptions as an exponential distribution. Estimate the rate and mean. Use the
predictive distribution to evaluate the fit of the exponential model to these data.

Optional. Repeat for waiting.
Solution

For eruptions.

compute ml estimates of lambda (exponential rate)
lambda_hat <- 1/mean(faithful$eruptions)

create observed data set
observed_data <- tibble(eruptions = faithful$eruptions, type = "observed") %>’
glimpse ()

Rows: 272
Columns: 2
$ eruptions <dbl> 3.600, 1.800, 3.333, 2.283, 4.533, 2.883, 4.700, 3.600, 1.95~
$ type <chr> "observed", "observed", "observed", "observed", "observed", ~

simulate five fake data sets
sim_list <- list()
n <- length(faithful$eruptions)
for (i in 1:5) {
y_pred <- rexp(n, rate = lambda_hat)
sim_1ist[[i]] <- tibble(eruptions = y_pred,
type = pasteO("simulated #", 1))

combine the fake and observed data sets
gg_data <- bind_rows(sim_list) %>%
bind_rows (observed_data) %>%
glimpse ()

13

Rows: 1,632
Columns: 2

$ eruptions <dbl> 0.66964861, 1.70461944, 2.59265294, 3.76124617, 3.54745264, ~

$ type <chr> "simulated #1", "simulated #1",

plot the observed and fake data sets

ggplot (gg_data, aes(x = eruptiomns)) +
geom_histogram() +
facet_wrap(vars(type))

observed simulated #1
90 -
60 -
30-
- 0 - — —- -
c
8 simulated #3 simulated #4
o
90 -
60 -
N L_ h— _
O L 1 1 == 1 1 1 = 1
0 10 20 0 10 20
eruptions

simulated #2

- -

simulated #5

o-
[y
o
N
o

"simulated #1",

"simulated #-~

The exponential model does not fit these data well. Why the simulated data have roughly the
same average, then simulated data have a much larger SD. The R code below computes the
average and SD for the observed and simulated data sets. Much like the Poisson distribution,
the mean and the variance of the distribution are linked. In the case of the exponential, the
mean equals the SD (you can see that in the summaries below). However the mean and the SD
are quite different in the observed data, so the exponential model can’t fit these data well.

summarize(gg_data,
avg = mean(eruptions),
sd = sd(eruptions),
.by = type)

A tibble: 6 x 3

14

type avg sd
<chr> <dbl> <dbl>

1 simulated #1 3.46 3.58
2 simulated #2 3.69 3.79
3 simulated #3 3.32 3.16
4 simulated #4 3.69 3.36
5 simulated #5 3.58 3.76
6 observed 3.49 1.14

For waiting.

compute ml estimates of lambda (exponential rate)
lambda_hat <- 1/mean(faithful$waiting)

create observed data set
observed_data <- tibble(waiting = faithful$waiting, type = "observed") %>%
glimpse ()

Rows: 272
Columns: 2
$ waiting <dbl> 79, 54, 74, 62, 85, b5, 88, 85, 51, 85, 54, 84, 78, 47, 83, 52~
$ type <chr> "observed", "observed", "observed", "observed", "observed", "o~

simulate five fake data sets
sim_list <- list()
n <- length(faithful$waiting)
for (i in 1:5) {
y_pred <- rexp(n, rate = lambda_hat)
sim_1ist[[i]l] <- tibble(waiting = y_pred,
type = pasteO("simulated #", i))

combine the fake and observed data sets
gg_data <- bind_rows(sim_list) %>%
bind_rows (observed_data) %>%
glimpse ()

Rows: 1,632
Columns: 2
$ waiting <dbl> 9.880443, 121.205849, 22.685621, 19.431747, 15.665561, 66.8877~
$ type <chr> "simulated #1", "simulated #1", "simulated #1", "simulated #1"~

15

plot the observed and fake data sets

gegplot(gg_data, aes(x = waiting)) +
geom_histogram() +
facet_wrap(vars(type))

observed simulated #1 simulated #2
150 -
100 -
= 0- —— = -
c
§ simulated #3 simulated #4 simulated #5
150 -
100 -

o o el

0 200 400 600 800 O 200 400 600 800 O 200 400 600 800
waiting
The results for waiting are nearly identical to the results for eruptions. The exponential

model cannot fit these data well because the observed values are much less dispersed than an
exponential model assumes for a mean of about 70.

summarize (gg_data,
avg = mean(waiting),
sd = sd(waiting),
.by = type)

A tibble: 6 x 3

type avg sd

<chr> <dbl> <dbl>
1 simulated #1 72.5 76.7
2 simulated #2 71.2 70.2
3 simulated #3 73.1 69.2
4 simulated #4 76.8 80.5
5 simulated #5 78.2 85.2
6 observed 70.9 13.6

16

Exercise 10 Herron's hockey data set

Herron’s hockey data set contains data on the time between hits' in the regulation periods of
the 82 regular season games for the Chicago Blackhawks. The data are available via GitHub
Gist here. You can load the data directly from the web, but you need to click “Raw” and copy
the URL for the raw CSV data. Model seconds_btw_hits as an exponential distribution. Es-
timate the rate and mean. Use the predictive distribution to evaluate the fit of the exponential
model to these data. Discuss whether you find the fit surprising and explain why.

load data directly from web
hockey <- read_csv("https://gist.githubusercontent.com/carlislerainey/0Obc3018cd2377022fd045e

quick look

glimpse (hockey)

Rows: 1,175

Columns: 5

$ game_id <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, ~
$ period_id <dbl> 1, 1, 1, 1, 1, 1,1, 2, 2, 2,1, 1,1, 1, 2, ~
$ time _of hit <chr> "2b58", "2M 8s", "2M 58s", "3M 8s", "4M 138", ~
$ seconds_played_in_season <dbl> 25, 128, 178, 188, 253, 560, 643, 1407, 1825,~
$ seconds btw_hits <dbl> NA, 103, 50, 10, 65, 307, 83, 764, 418, 535, ~
Solution

compute ml estimates of lambda (exponential rate)
y <- na.omit (hockey$seconds_btw_hits)
lambda_hat <- 1/mean(y)

create observed data set
observed_data <- tibble(seconds_btw_hits = y, type = "observed") %>%
glimpse ()

Rows: 1,174

Columns: 2

$ seconds_btw_hits <dbl> 103, 50, 10, 65, 307, 83, 764, 418, 535, 2022, 88, 17~
$ type <chr> "observed", "observed", "observed", "observed", "obse~

From Wikipedia, a hit is defined as: “Intentionally initiated contact with the player possessing the puck that
causes that player to lose possession of the puck. Loss of possession may or may not involve a turnover. If
the contact results in a penalty, no hit is awarded.”

17

https://gist.github.com/carlislerainey/0bc3018cd2377022fd045e1c932110a2
https://en.wikipedia.org/wiki/Ice_hockey_statistics

simulate five fake data sets
sim_list <- 1ist()
n <- length(y)
for (i in 1:5) {
y_pred <- rexp(n, rate = lambda_hat)
sim_list[[i]] <- tibble(seconds_btw_hits = y_pred,
type = pasteO("simulated #", i))

combine the fake and observed data sets
gg_data <- bind_rows(sim_list) %>%
bind_rows (observed_data) %>%
glimpse ()

Rows: 7,044

Columns: 2

$ seconds_btw_hits <dbl> 66.0054302, 104.4624419, 114.6189980, 287.8180699, 4.~
$ type <chr> "simulated #1", "simulated #1", "simulated #1", "simu~

plot the observed and fake data sets
ggplot(gg_data, aes(x = seconds_btw_hits)) +
geom_histogram() +
facet_wrap(vars(type))

observed simulated #1 simulated #2
300-
200 -
100 -
= 0- — ——
c
8 simulated #3 simulated #4 simulated #5
O
300 -
200 -
100-
O L 1 1 1 7I
1000 2000 1000 2000 0 1000 2000

seconds_btw_hlts

18

These distributions look very similar. For a more refined comparison, let’s plot the ECDFs
and put them all in the same panel. Even with this very precise comparison between the two,
it’s almost impossible to distinguish between the observed and fake data.

In sports, we often then about momentum and mental states. We imagine big swings in favor
of one team and against another. We might imagine that hits are related. If there has been
a hit or two or three recently, we’ll see more in the near future. Similarly, we might imagine
that if it’s been a while since we’ve seen a hit, we’re unlikely to see one soon. But these data
show that’s not the case. The time since that last hit tells us nothing about the likelihood of
a hit in the near future! Maybe momentum is overrated?

separate the labels of the simulated data into two parts
gg_data2 <- gg_data |>

separate(type, into = c("type", "version")) |[>

glimpse ()

Warning: Expected 2 pieces. Missing pieces filled with "NA~ in 1174 rows [5871, 5872,
5873, 5874, 5875, 5876, 5877, 5878, 5879, 5880, 5881, 5882, 5883, 5884, 5885,
5886, 5887, 5888, 5889, 5890, ...].

Rows: 7,044

Columns: 3

$ seconds_btw_hits <dbl> 66.0054302, 104.4624419, 114.6189980, 287.8180699, 4.~
$ type <chr> "simulated", "simulated", "simulated", "simulated", "~
$ version el o o s R e A R e e

plot histograms of real and fake data
ggplot(gg_data2, aes(x = seconds_btw_hits, color = type, group = version)) +
stat_ecdf ()

19

1.00-

-
type

0.50- observed

— simulated

0.25-

0.00 -

0 500 1000 1500 2000 2500
seconds_btw_hits

Exercise 11 The location-scale t distribution

Some Theory

The location-scale t distribution is a flexible model for data that may exhibit heavier-than-
normal tails. This is can be helpful when your data have more extreme observations than
expected with a normal model.

The pdf of the location-scale t distribution is

v+l

f(yfﬂ,a,y)—m [1+i<y;M>z] o) |

where T'(+) is the gamma function, u is the location parameter (which shifts the distribution
much like the mean of the normal distribution), o is the scale parameter (which changes the
spread of the distribution much like the SD parameter of the normal distribution), and v con-
trols the heaviness of the tails—a smaller value of v produces a heavier tails and the distribution
converges to the normal distribution as v — oco. For v > 10, the ¢ and normal distributions
are very similar. We refer to the special case of v = 1 as the Cauchy distribution.

The figure below compares the location-scale ¢t and normal distributions. As x moves away
from the center of the distribution, notice that that the ¢ density remains well above zero for
much longer when the df is less than five or so.

20

Location—Scale t Distribution vs Normal Distribution
location = 10; scale = 2

df=1 df =3 df=5

0.15+

0.10+

0.05

2
‘D
% df =10 df = 100 df = 1000
[a]

0.151

0.10 4

0.05 1

0.00 1

10 15 20 O 5 10 15 20
X

o
5
=
o
[l
3
N
=}
[}
5

These heavy tails make the location-scale ¢ distribution useful for robust modeling, where we
want to capture central tendencies while being less sensitive to unusual values.

In R, we have the metRology: :dt.scaled() function that computes the density or likelihood.
Some important things to note about this function: the argument mean refers to the location
parameter u, though p isn’t always a mean. The argument sd refers to the scale parameter o,
though o isn’t the SD. The argument df refers to the parameter v.

Some Questions

a. As a baseline, model the percentage GDP growth in the data below as using a normal
model. Use the predictive distribution to assess the fit. What does the normal model
miss?

b. Asan alternative, try a location-scale ¢ model. Use optim() to estimate the parameters p,
o, and v. Compare the predictive distribution for the ¢ model to the normal model. (The
metRology::dt.scaled(..., log = TRUE) function will compute the log-likelihood for
the individual observations, and metRology: :rt.scaled() will draw samples.)

c¢. What is the ML estimate of the degrees of freedom parameter? Discuss it’s importance.
What patterns can the t distribution capture that the normal distribution cannot?

21

load package
library (WDI)

get annual % gdp growth (annual %) for 2022

- note: "NY.GDP.MKTP.

KD.ZG" is percentage gdp growth

see https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
df <- WDI(indicator = "NY.GDP.MKTP.KD.ZG",

start = 2022,
end = 2022,
extra = TRUE) %>%

data includes aggregates (e.g., European Union); filter these out
filter(region != "Aggregates") %>%

change variable name

mutate (pct_gdp_growth = NY.GDP.MKTP.KD.ZG) %>%

select needed variables

select (country, year,

region, pct_gdp_growth) %>7

remove missing values

na.omit() %>%

glimpse ()
Rows: 207
Columns: 4
$ country <chr>
$ year <int>
$ region <chr>

$ pct_gdp_growth <dbl>

plot histogram

ggplot(df, aes(x = pct_

geom_histogram()

"Afghanistan", "Albania", "Algeria", "American Samoa", ~
2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2022, 2~
"South Asia", "Europe & Central Asia", "Middle East & N~
-6.240172, 4.826696, 3.600000, 1.735016, 9.564612, 3.04~

gdp_growth)) +

22

60 -

€ 40-
>
o
(@]

20-

0- — [|
25 0 25
pct_gdp_growth

Solution

Part (a): Normal model

create a function to fit the normal model
fit_normal_model <- function(y) {
mu_hat <- mean(y)
sigma2_hat <- sum((y - mu_hat)~2)/length(y)
res <- c("mu_hat" = mu_hat,
"sigma2_hat" = sigma2_hat,
"sigma_hat" = sqrt(sigma2_hat))
return(res)

}

fit normal model and print estimates

normal_ests <- fit_normal_model (df$pct_gdp_growth)

normal_ests

mu_hat sigma2_hat sigma_hat
4.478777 45.931083 6.777247

compute ml estimates of lambda (exponential rate)

y <- df$pct_gdp_growth
n <- length(y)

23

50

create observed data set
observed_data <- tibble(pct_gdp_growth = y, type = "observed") %>%
glimpse ()

Rows: 207
Columns: 2
$ pct_gdp_growth <dbl> -6.240172, 4.826696, 3.600000, 1.735016, 9.564612, 3.04~
$ type <chr> "observed", "observed", "observed", "observed", "observ~

simulate five fake data sets
sim_list <- 1ist()
for (i in 1:5) {
y_pred <- rnorm(n, mean = normal_ests[1], sd = normal_ests[3])
sim_1ist[[i]] <- tibble(pct_gdp_growth = y_pred,
type = pasteO("simulated #", 1))

combine the fake and observed data sets
gg_data <- bind_rows(sim_list) %>%
bind_rows (observed_data) %>%
glimpse()

Rows: 1,242
Columns: 2
$ pct_gdp_growth <dbl> 4.6972129, 5.0900301, 15.6011669, 5.6945016, 3.0741227,~
$ type <chr> "simulated #1", "simulated #1", "simulated #1", "simula~

plot the observed and fake data sets

ggplot(gg_data, aes(x = pct_gdp_growth)) +
geom_histogram() +
facet_wrap(vars(type))

“stat_bin() " using “bins = 30°. Pick better value with “binwidth~.

24

observed simulated #1 simulated #2

60-

40-

20-

0-- = -

simulated #3 simulated #4 simulated #5

count

60 -
40-

20-

-25 0 25 50 -25 0 25 50 -25 0 25 50
pct_gdp_growth

In order to accommodate the extreme values, the normal distribution needs to have a larger
SD. However, this larger SD means that the fitted distribution has too little clustering close
to the average. The observed variable has more data points falling closer to the average and
a few data points falling far from the average.

load packages
library(metRology) # for location-scale t density

create log-likelihood for the location-scale t distribution
11_t <- function(par, y) {

par contains par[1] = mu, par[2] = sigma, and par[3] = nu
mu <- par[1] # location

sigma <- par[2] # scale

nu <- par[3] # degrees of freedom (heaviness of tails)

evaluate if parameters are within bounds
in_bounds <- nu > 0 & sigma > O

evaluate log-likelihood

11 <- ifelse(in_bounds,
if in bounds
sum(dt.scaled(y, log

TRUE,
sigma, df = nuw)),

mean = mu, sd
if not in bounds

25

-Inf)
return(1l)
}

create a function to fit the t model
fit_t_model <- function(y) {

starting values

mu_start <- median(y)

sigma_start <- sd(y)

nu_start <- 10

init_par <- c(mu_start, sigma_start, nu_start)

optimize
opt <- optim(par = init_par,

fn = 11_t,
y=79

method = "Nelder-Mead",
control = list(fnscale = -1))

organize output

res <- c("mu_hat" = opt$par[1l],
"sigma_hat" = opt$par[2],
"nu_hat" = opt$par[3])

return(res)

fit model
t_ests <- fit_t_model(df$pct_gdp_growth); t_ests

mu_hat sigma_hat nu_hat
4.321876 2.478035 1.826382

simulate five fake data sets
sim_1list <- 1list()
for (i in 1:5) {
y_pred <- rt.scaled(n, mean = t_ests[1],
sd = t_ests[2],
df = t_ests[3])
sim_1ist[[i]] <- tibble(pct_gdp_growth = y_pred,
type = pasteO("simulated #", 1))

26

combine the fake and observed data sets
gg_data <- bind_rows(sim_list) %>%
bind_rows (observed_data) %>%
glimpse ()

Rows: 1,242
Columns: 2
$ pct_gdp_growth <dbl> 6.8064589, 3.6182219, 1.6719102, 4.0425009, 7.4338720, ~
$ type <chr> "simulated #1", "simulated #1", "simulated #1", "simula~

plot the observed and fake data sets

ggplot(gg_data, aes(x = pct_gdp_growth)) +
geom_histogram() +
facet_wrap(vars(type))

“stat_bin()~ using “bins = 30°. Pick better value with “binwidth~.

observed simulated #1 simulated #2
120-
80 -
40 -
= 0- = - —
c
8 simulated #3 simulated #4 simulated #5
o
120-
80-
40-
O = 1 1 1 1
—100 —50 —100 —50 -100 -50 0 50

pct_gdp_g rowth

These fitted t distributions match the observed data quite a bit better. We put the ECDFs on
the same panel to see that they match really well.

27

separate the labels of the simulated data into two parts
gg_data2 <- gg_data |>

separate(type, into = c("type", "version")) |[>

glimpse ()

Warning: Expected 2 pieces. Missing pieces filled with "NA™ in 207 rows [1036, 1037,
1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1050,
1051, 1052, 1053, 1054, 1055, ...].

Rows: 1,242
Columns: 3
$ pct_gdp_growth <dbl> 6.8064589, 3.6182219, 1.6719102, 4.0425009, 7.4338720, ~
$ type <chr> "simulated", "simulated", "simulated", "simulated", "si~
$ version <chr> 1", wan oo oo ongn oo o o~

plot histograms of real and fake data
ggplot (gg_data2, aes(x = pct_gdp_growth, color = type, group = version)) +
stat_ecdf ()

1.00-
0.75-
type
[T
8 0.50- —— observed
[47)
— simulated
0.25-
0.00

-100 -50 0 50
pct_gdp_growth

28

Exercise 12 Corrupted data

For the WDI data above, corrupt the data by replacing one observation with a severe data
entry error (something like pct_gdp_growth of 10,000) and re-fit the normal and ¢ models.
How did the estimates of the location of each change? Why? Is this a desirable property?

Solution

save variable as y (to simplify the code)
y <- df$pct_gdp_growth

corrupt the data
y_corrupt <- vy

y_corrupt[1] <- 10000

fit normal models
fit_normal_model (y)

mu_hat sigma2_hat sigma_hat
4.478777 45.931083 6.777247

fit_normal_model(y_corrupt)

mu_hat sigma2_hat sigma_hat
52.8181 480367.8380 693.0857

The data entry error shifts estimated mean in the normal model from about 4.4 to about 52.
Given that we're talking about the percent GDP growth, this is a huge overestimate.

fit t models
fit_t_model(y)

mu_hat sigma_hat nu_hat
4.321876 2.478035 1.826382

fit_t_model(y_corrupt)

mu_hat sigma_hat nu_hat
4.313909 2.242405 1.408114

29

The estimated mean in the ¢ model is about 4.2 in both in both the correct data and the data
set with a data entry errors.

The t model can have heavy tails, so it can easily dismiss the data entry error as a “weird
draw” that isn’t informative about the location.

This might be a desirable property for statistical or substantive reasons. If we have data entry
errors, then it’s good that our estimates don’t swing wildly in response. But it’s also possible
that some cases in the data set are correctly measured, but wildly different that the other,
“typical” cases that our theory has in mind. So substantively, we might want a model that
allows these “very unusual cases” to appear in the data set without pulling the estimates far
from the typical values.

Exercise 13 Optional: R function to simulate the predictive distribution

Note: This is a challenging function to write, so only attempt this problem if you are comfortable
with writing other, simpler functions.

We’ve use my code to simulate the predictive distribution a few times and combine them
together with the observed data set really long and repetitive. In his excellent R for Data
Science 2(3), Hadley Wickham writes: “A good rule of thumb is to consider writing a function
whenever you've copied and pasted a block of code more than twice (i.e. you now have three
copies of the same code).”

The inputs might be (1), the name of the outcome variable, (2) an observed data set, (3) a
function to simulate the fake data sets, and (4) the number of fake data sets to generate.

sim_fake <- function(variable, observed, sim fn, n = 5) {

}

Exercise 14 Reflection

The exercises above ask you to compare fitted distributions to observed data. In some cases,
we saw close correspondence between the models and the data. In other cases, the two di-
verged substantially. You may have noticed that even the poorly fitting distributions tend to
have the same mean as the observed data. Is it important that our models mimic the other
features of the data? To what extent is the mean the most important feature (or the only
important feature) of the distribution? When and why might we care about the other features
substantively (e.g., SD, heavy tails, memorylessness)? Why might we care about these other
features statistically?

30

https://r4ds.hadley.nz/functions.html
https://r4ds.hadley.nz/functions.html

	Bernoulli grid search
	Equivalence of numerical and closed-form solutions
	
	
	
	Uniform distribution
	Exponential model
	Simulating memorylessness in R
	The faithful data set
	Herron's hockey data set
	The location-scale t distribution
	Corrupted data
	Optional: R function to simulate the predictive distribution
	Reflection

