
Week 1 Exercises

I created some notes that review the concepts required for these exercises, but you should draw
on familiar textbooks and notes where possible.

And this is an ambitious set of exercises. Make a serious effort to freshen your mathematical
toolkit. Your effort will make for a smoother semester. If you find yourself struggling to finish
all the problems, then focus on 4(f), 4(g), 5, 7, 8, 9, 10, 13(1), 14, 15, 20, 21, 22, 24(c), 24(g),
25(b), 25(e), 26(c), and 27. Use the other exercises as needed to brush up on weaknesses.

1 Fractions, Logarithms, and Exponents

Exercise 1 Some Practice with Fractions

Simplify each of the following:

a. 𝑥
𝑦 + 𝑧

𝑦
b. 𝑚

𝑛 − 𝑟
𝑛

c. 𝑝 + 𝑞
𝑟 + 𝑠

𝑟
d. 2𝑎

𝑏 + 3𝑎
𝑏

e. 𝑥
2 + 𝑦

3
f. 1

𝑎 − 1
𝑏 (write as a single fraction)

Solutions

a. 𝑥
𝑦 + 𝑧

𝑦 = 𝑥 + 𝑧
𝑦
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b. 𝑚
𝑛 − 𝑟

𝑛 = 𝑚 − 𝑟
𝑛

c. 𝑝 + 𝑞
𝑟 + 𝑠

𝑟 = 𝑝 + 𝑞 + 𝑠
𝑟

d. 2𝑎
𝑏 + 3𝑎

𝑏 = 2𝑎 + 3𝑎
𝑏 = 5𝑎

𝑏
e. 𝑥

2 + 𝑦
3 = 3𝑥 + 2𝑦

6

f. 1
𝑎 − 1

𝑏 = 𝑏 − 𝑎
𝑎𝑏

Exercise 2 Some Practice with Logarithms

You can assume arguments to logs are always positive, for the sake of these exercises.

Simplify each of the following:

a. log10(105)

b. log(𝑒3) (note: log(𝑥) refers to the natural log in our class)
c. log(3𝑥) + log(4)

d. log(𝑥3𝑦2)

e. log(𝑥2

𝑦3 )

f. log(
𝑛

∏
𝑖=1

𝑥2
𝑖 )

Solutions

a. log10(105) = 5
b. log(𝑒3) = 3

c. log(3𝑥⋅4) = log(12𝑥)

d. 3 log(𝑥) + 2 log(𝑦)

e. 2 log(𝑥) − 3 log(𝑦)

f.
𝑛

∑
𝑖=1

2 log(𝑥𝑖)
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Exercise 3 Some Practice with Exponents

Simplify each of the following:

a. 𝑒2 ⋅ 𝑒5

b. (𝑒3)2

c. 𝑒𝑥

𝑒4

d. (1
𝑒)

𝑥

e. 10𝑥 ⋅ 10−𝑥

f. (𝑎𝑏2)3

Solutions

a. 𝑒7

b. 𝑒6

c. 𝑒𝑥−4

d. 𝑒−𝑥

e. 1

f. 𝑎3𝑏6

Exercise 4 Some Practice Combining Fractions, Logarithms, and Expo-
nents

Simplify each of the following:

a. 𝑥2 + 𝑥
𝑥

b. 1
2 log(𝑥2)

c. 𝑒𝑥+1
𝑒
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d. log(𝑒2

𝑥 )

e. log(𝑥) + log(𝑦)
2

f. log(𝑎3𝑏2

𝑐 )

g. log (∏𝑛
𝑖=1 𝜋𝑦𝑖(1 − 𝜋)(1−𝑦𝑖))

Solutions

a. 𝑥 + 1

b. log(𝑥)

c. 𝑒𝑥

d. 2 − log(𝑥)

e. log(𝑥𝑦)
2

f. 3 log(𝑎) + 2 log(𝑏) − log(𝑐)

g. (∑𝑛
𝑖=1 𝑦𝑖) log(𝜋) + (𝑛 − ∑𝑛

𝑖=1 𝑦𝑖) log(1 − 𝜋)

Exercise 5 Inverse Logit

Show that the two common forms of the inverse-logit function

𝑓1(𝑥) = 1
1 + 𝑒−𝑥 and 𝑓2(𝑥) = 𝑒𝑥

1 + 𝑒𝑥

are algebraically equivalent for every real number 𝑥.
Solution

Start with 𝑓1(𝑥) = 1
1+𝑒−𝑥 . Multiply the numerator and denominator by the strictly positive

quantity 𝑒𝑥 (which leaves the fraction’s value unchanged). After a bit of algebra, we obtain
𝑓2.

𝑓1(𝑥) = 1 ⋅ 𝑒𝑥

(1 + 𝑒−𝑥) ⋅ 𝑒𝑥 = 𝑒𝑥

𝑒𝑥 + 1 = 𝑒𝑥

1 + 𝑒𝑥 = 𝑓2(𝑥).
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Hence 𝑓1(𝑥) = 𝑓2(𝑥), so the two expressions are equivalent for all 𝑥.

2 Derivatives

Exercise 6 Some Practice with Derivatives

Differentiate each of the following:

a. Let 𝑓(𝑥) = 5

b. Let 𝑓(𝑥) = 𝑥4

c. Let 𝑓(𝑥) = 3𝑥2 − 4𝑥 + 7

d. Let 𝑓(𝑥) = 𝑒2𝑥

e. Let 𝑔(𝑡) = log(𝑡3)

f. Let ℎ(𝑦) = 𝑦3 log(𝑦)

g. Let 𝑓(𝑥) = (𝑥2 + 1)5

h. Let 𝑓(𝑥) = 𝑒𝑥

𝑥
i. Let 𝑞(𝑢) = 𝑢2𝑒𝑢3

j. Let 𝑟(𝑧) = log(𝑧2 + 1)
𝑒𝑧

Solutions

a. 0. Constant rule.

b. 4𝑥3. Power rule (𝑛𝑥𝑛−1).

c. 6𝑥 − 4. Term-by-term power rule.

d. 2𝑒2𝑥. Chain rule on 𝑒𝑘𝑥.

e. 3
𝑡 . Rewrite log(𝑡3) = 3 log(𝑡), then logarithm rule.
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f. 3𝑦2 log(𝑦) + 𝑦2. Product rule on 𝑦3 ⋅log(𝑦).

g. 10𝑥 (𝑥2 + 1)4. Chain rule on an outer fifth power.

h. 𝑒𝑥 𝑥 − 1
𝑥2 . Rewrite 𝑒𝑥𝑥−1, then product rule.

i. 𝑒𝑢3(2𝑢 + 3𝑢4). Product rule; inner derivative 𝑑/𝑑𝑢(𝑒𝑢3) = 𝑒𝑢3 ⋅3𝑢2.

j.
2𝑧

𝑧2+1 − log(𝑧2 + 1)
𝑒𝑧 . Quotient rule with a chain inside log(𝑧2 + 1).

Exercise 7 An Important Preview

Let ℓ(𝜋) = 𝑆 log(𝜋) + (𝑛 − 𝑆) log(1 − 𝜋) for 0 < 𝜋 < 1, where 𝑆 and 𝑛 (with 0 ≤ 𝑆 ≤ 𝑛) are
fixed numerical constants. Find 𝑑ℓ(𝜋)

𝑑𝜋 and 𝑑2ℓ(𝜋)
𝑑𝜋2 .

Solution

• First derivative

𝑑ℓ
𝑑𝜋 = 𝑆

𝜋 − 𝑛 − 𝑆
1 − 𝜋 .

(Quotient-inside-log derivatives: 𝑑/𝑑𝜋[log(𝜋)] = 1/𝜋,
𝑑/𝑑𝜋[log(1 − 𝜋)] = −1/(1 − 𝜋).)

• Second derivative

𝑑2ℓ
𝑑𝜋2 = − 𝑆

𝜋2 − 𝑛 − 𝑆
(1 − 𝜋)2 .

Each term differentiates again via the power rule.
The result is negative for all 𝜋 ∈ (0, 1), so ℓ(𝜋) is concave.

Exercise 8 Inverse Logit

Define 𝑝(𝜃) = 1
1+𝑒−𝜃 for 𝜃 ∈ ℝ. Find 𝑝′(𝜃) and 𝑝″(𝜃).

Solution
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• First derivative

Rewrite 𝑝(𝜃) = (1 + 𝑒−𝜃)−1 and apply the chain rule:

𝑝′(𝜃) = −(1 + 𝑒−𝜃)−2 ⋅ (−𝑒−𝜃) = 𝑒−𝜃

(1 + 𝑒−𝜃)2 = 𝑝(𝜃)[1 − 𝑝(𝜃)].

• Second derivative

Differentiate 𝑝′(𝜃) = 𝑝(1 − 𝑝) using the product rule:

𝑝″(𝜃) = 𝑝′(1 − 𝑝) − 𝑝 𝑝′ = 𝑝(𝜃)[1 − 𝑝(𝜃)][1 − 2𝑝(𝜃)].

The factor 1 − 2𝑝(𝜃) shows the curve’s slope is steepest (and 𝑝″ is zero) when 𝑝(𝜃) = 0.5.

Exercise 9 Brambor, Clark, and Golder (2006)

Let 𝐸[𝑦 ∣ 𝑥1, 𝑥2] = 𝛽0+𝛽1𝑥1+𝛽2𝑥2+𝛽3𝑥1𝑥2, where 𝛽0, … , 𝛽3 are constants. Find the marginal

effect of 𝑥1 on 𝑦. That is, compute 𝜕𝐸[𝑦 ∣ 𝑥1, 𝑥2]
𝜕𝑥1

.

Solution

Differentiate with respect to 𝑥1 while treating 𝑥2 as constant, so that

𝜕𝐸[𝑦 ∣ 𝑥1, 𝑥2]
𝜕𝑥1

= 𝛽1 + 𝛽3𝑥2.

The marginal effect of 𝑥1 depends on 𝑥2; when 𝑥2 = 0, the effect is 𝛽1, and it changes by 𝛽3
units for every unit increase in 𝑥2.

Exercise 10 Brambor, Clark, and Golder (2006) for Cubic Polynomial

Let 𝐸[𝑦 ∣ 𝑥] = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3, where 𝛽0, … , 𝛽3 are constants. Find the marginal effect

of 𝑥 on 𝑦. That is, compute 𝜕𝐸[𝑦 ∣ 𝑥]
𝜕𝑥 .

Solution

Apply the power rule term-by-term so that

𝜕𝐸[𝑦 ∣ 𝑥]
𝜕𝑥 = 𝛽1 + 2𝛽2𝑥 + 3𝛽3𝑥2.
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The marginal effect varies with 𝑥 in a quadratic fashion; the sign and magnitude are governed
by the coefficients on the polynomial terms.

3 Integrals

Exercise 11 Some Practice Problems for Integrals

Compute each integral.

a. ∫ 7 𝑑𝑥

b. ∫
2

0
𝑥6 𝑑𝑥

c. ∫(3𝑥2 − 4) 𝑑𝑥

d. ∫
1

0
𝑒3𝑥 𝑑𝑥

e. ∫ 1
𝑥 𝑑𝑥

f. ∫ 4𝑥 𝑒𝑥2 𝑑𝑥 Hint: let 𝑢 = 𝑥2.

g. ∫ 𝑥 𝑒𝑥 𝑑𝑥 Hint: integration by parts with 𝑢 = 𝑥.

h. ∫
1

0
𝑥2 𝑑𝑥

Solutions

a. 7𝑥 + 𝐶

b. 128
7 (power rule 𝑥7

7 evaluated from 0 to 2).

c. 𝑥3 − 4𝑥 + 𝐶

d. 𝑒3 − 1
3 (antiderivative 𝑒3𝑥/3 then plug in 1 and 0).

e. log |𝑥| + 𝐶

f. 2𝑒𝑥2 + 𝐶 (substitute 𝑢 = 𝑥2 ⇒4𝑥 𝑑𝑥 = 2 𝑑𝑢).
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g. 𝑒𝑥(𝑥 − 1) + 𝐶 (integration by parts: 𝑢 = 𝑥, 𝑑𝑣 = 𝑒𝑥𝑑𝑥).

h. 1
3 (antiderivative 𝑥3/3 evaluated from 0 to 1).

4 Matrices

Exercise 12 Some Practice with Transposes

Find the transpose of each of the following matrices:

a. 𝐴 = [1 2
3 4]

b. 𝐵 = [0 −1 2
5 3 1]

c. 𝐶 = ⎡⎢
⎣

7
8
9
⎤⎥
⎦

Solutions

a. 𝐴′ = [1 3
2 4]

b. 𝐵′ = ⎡⎢
⎣

0 5
−1 3
2 1

⎤⎥
⎦

c. 𝐶′ = [7 8 9]

Exercise 13 Some Practice with Matrix Multiplication

Problem 1

Multiply 𝐴 and 𝐵 using paper-and-pencil. Check your work with R.

𝐴 = [1 2 3
4 5 6] , 𝐵 = ⎡⎢

⎣

7 8
9 10
11 12

⎤⎥
⎦

.

Problem 2

Let
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𝐴 = [ 2 1 0
−1 3 4] .

Compute 𝐴′𝐴 (i.e., 𝐴⊤𝐴) using paper-and-pencil. Check your work with R.

Problem 1 Solution

Check conformability: 𝐴 is 2 × 3 and 𝐵 is 3 × 2, so 𝐴𝐵 is 2 × 2.

𝐴𝐵 = [(1)(7) + (2)(9) + (3)(11) (1)(8) + (2)(10) + (3)(12)
(4)(7) + (5)(9) + (6)(11) (4)(8) + (5)(10) + (6)(12)] = [ 58 64

139 154] .

A <- matrix(c(1, 2, 3,
4, 5, 6),

nrow = 2, byrow = TRUE)

B <- matrix(c( 7, 8,
9, 10,

11, 12),
nrow = 3, byrow = TRUE)

A %*% B # confirm work

[,1] [,2]
[1,] 58 64
[2,] 139 154

Problem 2 Solution

1. Conformability
𝐴 is 2 × 3, so 𝐴′𝐴 will be 3 × 3.

2. Form 𝐴′

𝐴′ = ⎡⎢
⎣

2 −1
1 3
0 4

⎤⎥
⎦

.

3. Multiply entry-by-entry
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𝐴′𝐴 = ⎡⎢
⎣

(2)(2) + (−1)(−1) (2)(1) + (−1)(3) (2)(0) + (−1)(4)
(1)(2) + (3)(−1) (1)(1) + (3)(3) (1)(0) + (3)(4)
(0)(2) + (4)(−1) (0)(1) + (4)(3) (0)(0) + (4)(4)

⎤⎥
⎦

= ⎡⎢
⎣

5 −1 −4
−1 10 12
−4 12 16

⎤⎥
⎦

.

A <- matrix(c( 2, 1, 0,
-1, 3, 4),

nrow = 2, byrow = TRUE)

t(A) %*% A # confirm work

[,1] [,2] [,3]
[1,] 5 -1 -4
[2,] -1 10 12
[3,] -4 12 16

Exercise 14 Matrices, OLS, and R

For the linear model 𝑦 = 𝑋𝛽 + 𝜀, where 𝑋 is an 𝑛 × 𝑘 full-rank design matrix (including a
column of ones), we define

• OLS estimator: ̂𝛽 = (𝑋′𝑋)−1𝑋′𝑦.
• Residual vector: 𝑒 = 𝑦 − 𝑋 ̂𝛽.
• Predicted values: ̂𝑦 = 𝑋 ̂𝛽.
• Classical variance–covariance matrix: Varcl( ̂𝛽) = 𝜎̂2 (𝑋′𝑋)−1, where 𝜎̂2 = 𝑒′𝑒

𝑛 − 𝑘 .

1. Write an R function ols(X, y) that returns a list with the coefficient estimates beta_hat,
the classical variance matrix Var_cl, the residuals e, and the predicted values y_hat.

2. Use the penguins dataset in the {palmerpenguins} package to test your function. The
following starter code prepares 𝑋 and 𝑦.

# load packages
library(palmerpenguins)

# 1. drop NAs
penguins_complete <- na.omit(penguins)

# 2. make response vector (y)
y <- penguins_complete$body_mass_g # numeric vector (n × 1)
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## 3. make design matrix (X)
X_predictors <- as.matrix(penguins_complete[ ,

c("bill_length_mm",
"bill_depth_mm",
"flipper_length_mm")])

X <- cbind("(Intercept)" = 1, X_predictors)

Solution

The function.

ols <- function(X, y) {
## 1. Components of (X'X) and its inverse
X_transpose <- t(X) # X'
XtX <- X_transpose %*% X # X'X
XtX_inv <- solve(XtX) # (X'X)^{-1}

## 2. OLS estimator beta_hat
Xty <- X_transpose %*% y # X'y
beta_hat <- XtX_inv %*% Xty # (X'X)^{-1} X'y

## 3. Fitted values (y_hat) and residuals (e)
y_hat <- X %*% beta_hat
e <- y - y_hat

## 4. Classical variance–covariance matrix (Var_cl)
n <- nrow(X)
k <- ncol(X)

RSS <- t(e) %*% e # e'e
sigma2_hat <- as.numeric(RSS) / (n - k) # \hat\sigma^2
Var_cl <- sigma2_hat * XtX_inv # \hat\sigma^2 (X'X)^{-1}

## 5. Return list matching notation
list(

beta_hat = beta_hat,
Var_cl = Var_cl,
e = e,
y_hat = y_hat

)
}
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Demonstration with the penguins dataset.

# load packages
library(palmerpenguins)

# 1. drop NAs
penguins_complete <- na.omit(penguins)

# 2. make response vector (y)
y <- penguins_complete$body_mass_g # numeric vector (n × 1)

## 3. make design matrix (X)
X_predictors <- as.matrix(penguins_complete[ ,

c("bill_length_mm",
"bill_depth_mm",
"flipper_length_mm")])

X <- cbind("(Intercept)" = 1, X_predictors)

# compute quantities
results <- ols(X, y)

# print each component
results$beta_hat # beta-hat

[,1]
(Intercept) -6445.476043
bill_length_mm 3.292863
bill_depth_mm 17.836391
flipper_length_mm 50.762132

results$Var_cl # classical VCOV

(Intercept) bill_length_mm bill_depth_mm flipper_length_mm
(Intercept) 320503.2363 805.525086 -6528.69599 -1211.206658
bill_length_mm 805.5251 28.793240 -17.85211 -8.786474
bill_depth_mm -6528.6960 -17.852112 191.15678 20.067377
flipper_length_mm -1211.2067 -8.786474 20.06738 6.236320
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head(results$e) # first few residuals

[,1]
[1,] 545.23877
[2,] 363.29828
[3,] -656.89703
[4,] -366.70577
[5,] -46.16813
[6,] 436.95010

head(results$y_hat) # first few fitted values

[,1]
[1,] 3204.761
[2,] 3436.702
[3,] 3906.897
[4,] 3816.706
[5,] 3696.168
[6,] 3188.050

Exercise 15 Gradients and Hessians

Consider the function of two variables 𝑓(𝑥, 𝑦) = 3𝑥2𝑦 + 2𝑒𝑥𝑦 − 𝑦3. Compute (1) the gradient
vector ∇𝑓(𝑥, 𝑦) and (2) the Hessian matrix 𝐻𝑓(𝑥, 𝑦).
Gradient

The gradient collects the first-order partial derivatives.

𝜕𝑓
𝜕𝑥 = 6𝑥𝑦 + 2𝑦 𝑒𝑥𝑦,

𝜕𝑓
𝜕𝑦 = 3𝑥2 + 2𝑥 𝑒𝑥𝑦 − 3𝑦2.

Hence

∇𝑓(𝑥, 𝑦) = [ 6𝑥𝑦 + 2𝑦 𝑒𝑥𝑦

3𝑥2 + 2𝑥 𝑒𝑥𝑦 − 3𝑦2] .

2. Hessian
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The Hessian collects the second-order partial derivatives.

𝜕2𝑓
𝜕𝑥2 = 6𝑦 + 2𝑦2𝑒𝑥𝑦,

𝜕2𝑓
𝜕𝑥 𝜕𝑦 = 6𝑥 + 2𝑒𝑥𝑦 + 2𝑥𝑦 𝑒𝑥𝑦,

𝜕2𝑓
𝜕𝑦2 = −6𝑦 + 2𝑥2𝑒𝑥𝑦.

Notice that the mixed partials are equal (𝜕2𝑓/𝜕𝑥 𝜕𝑦 = 𝜕2𝑓/𝜕𝑦 𝜕𝑥).
The Hessian is

𝐻𝑓(𝑥, 𝑦) = [
6𝑦 + 2𝑦2𝑒𝑥𝑦 6𝑥 + 2𝑒𝑥𝑦 + 2𝑥𝑦 𝑒𝑥𝑦

6𝑥 + 2𝑒𝑥𝑦 + 2𝑥𝑦 𝑒𝑥𝑦 −6𝑦 + 2𝑥2𝑒𝑥𝑦 ] .

5 Probability Theory

Exercise 16 Some Results of the Axioms and Definition of Probability

Prove the following results:

a. Pr(∅) = 0.
b. If event 𝐴 ⊆ 𝐵, then Pr(𝐴) ≤ Pr(𝐵).
c. For event 𝐴, 0 ≤ Pr(𝐴) ≤ 1.
d. For any event 𝐴, Pr(𝐴𝑐) = 1 − Pr(𝐴).

Hints

a. Use Axiom 3.
b. Notice that 𝐵 = 𝐴 ∪ (𝐵 ∩ 𝐴𝑐). Then use the Additional Rule for Two Disjoint Events.
c. Axiom 1 establishes that 0 ≤ Pr(𝐴). Now show that Pr(𝐴) ≤ 1. To do this, the result

from (b).
d. Notice that Pr(𝑆) = Pr(𝐴) + Pr(𝐴𝑐) and follow this forward.

Solution

a. Pr(∅) = Pr( ⋃∞
𝑖=1 ∅) = ∑∞

𝑖=1 Pr(∅). This equality can hold only if Pr(∅) = 0.
b. 𝐵 = 𝐴 ∪ (𝐵 ∩ 𝐴𝑐). By the addition rule for disjoint events, Pr(𝐵) = Pr(𝐴) +Pr(𝐵 ∩ 𝐴𝑐).

By Axiom 1, Pr(𝐵 ∩ 𝐴𝑐) ≥ 0, so Pr(𝐴) ≤ Pr(𝐵).
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c. By Axiom 1, Pr(𝐴) ≥ 0. Since 𝐴 ⊆ 𝑆 (the sample space), by monotonicity we have
Pr(𝐴) ≤ Pr(𝑆) = 1. Thus 0 ≤ Pr(𝐴) ≤ 1.

d. Pr(𝑆) = Pr(𝐴) + Pr(𝐴𝑐). Then 1 = Pr(𝐴) + Pr(𝐴𝑐), so Pr(𝐴𝑐) = 1 − Pr(𝐴).

Exercise 17 Simplifying the Multiplication Rule

Simplify Pr(𝐴 ∣ 𝐵) for the following scenarios.

a. 𝐴 ⊂ 𝐵 and Pr(𝐵) > 0.
b. 𝐴 and 𝐵 are disjoint and Pr(𝐵) > 0.
c. 𝐵 is the empty set (tricky!).
d. 𝐵 is the sample space 𝑆.

Solution

We simplify Pr(𝐴 ∣ 𝐵) = Pr(𝐴∩𝐵)
Pr(𝐵) in each case:

a. If 𝐴 ⊂ 𝐵 and Pr(𝐵) > 0, then 𝐴 ∩ 𝐵 = 𝐴. So
Pr(𝐴 ∣ 𝐵) = Pr(𝐴∩𝐵)

Pr(𝐵) = Pr(𝐴)
Pr(𝐵) .

b. If 𝐴 and 𝐵 are disjoint and Pr(𝐵) > 0, then 𝐴 ∩ 𝐵 = ∅, and Pr(∅) = 0. So
Pr(𝐴 ∣ 𝐵) = 0

Pr(𝐵) = 0.
c. If 𝐵 = ∅, then Pr(𝐵) = 0, and the expression Pr(𝐴 ∣ 𝐵) = Pr(𝐴∩𝐵)

Pr(𝐵) is undefined.
Conditional probability is only defined when the probability of the conditioning event is
positive.

d. If 𝐵 = 𝑆 (the sample space), then 𝐴 ∩ 𝑆 = 𝐴 and Pr(𝑆) = 1. So
Pr(𝐴 ∣ 𝑆) = Pr(𝐴)

1 = Pr(𝐴).

Exercise 18

Suppose 𝐴 and 𝐵 are independent and Pr(𝐵) < 1. Find Pr(𝐴𝑐|𝐵𝑐) in terms of 𝐴 and 𝐵.
Prove that 𝐴𝑐 and 𝐵𝑐 are independent.

Solution

First, show that 𝐴𝑐 and 𝐵𝑐 are independent.
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Pr(𝐴𝑐 ∩ 𝐵𝑐) = Pr([𝐴 ∪ 𝐵]𝑐)
= 1 − Pr(𝐴 ∪ 𝐵)
= 1 − [Pr(𝐴) + Pr(𝐵) − Pr(𝐴 ∩ 𝐵)]
= 1 − Pr(𝐴) − Pr(𝐵) + Pr(𝐴)Pr(𝐵)
= [1 − Pr(𝐴)] × [1 − Pr(𝐵)]
= Pr(𝐴𝑐) × Pr(𝐵𝑐)

Then, by independence, we know that Pr(𝐴𝑐|𝐵𝑐) = Pr(𝐴𝑐) and that Pr(𝐴𝑐) = 1 − Pr(𝐴).

Exercise 19 Independence when Pr(𝐵) = 0

Suppose 𝐴 and 𝐵 are events and Pr(𝐵) = 0. (𝐴 is any event.) Find Pr(𝐴 ∩ 𝐵). Prove that 𝐴
and 𝐵 are independent.

Solution

Since Pr(𝐵) = 0, we have Pr(𝐴 ∩ 𝐵) ≤ Pr(𝐵) = 0, hence Pr(𝐴 ∩ 𝐵) = 0. Also Pr(𝐴)Pr(𝐵) =
Pr(𝐴) ⋅ 0 = 0. Therefore Pr(𝐴 ∩ 𝐵) = Pr(𝐴)Pr(𝐵), so 𝐴 and 𝐵 are independent.

Exercise 20 Sixes

Suppose a six-sided die is rolled 10 times. What’s the probability of…

a. all sixes?
b. not all-sixes?
c. all not-sixes?

Solution

a. (1/6)10

b. 1 − (1/6)10

c. (5/6)10
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Exercise 21 Drug Testing (Bayes’ Rule)

A drug test is used to detect the presence of a banned substance in professional athletes.
Suppose that 2 in every 1,000 athletes use the substance. The test correctly identifies users
98% of the time. However, it also produces a false positive 1% of the time for non-users. You
are randomly selected for testing, and your result comes back positive. Use Bayes’ rule to
compute the probability that you actually use the substance.

Solution

Let 𝑈 be the event that you use the banned substance and 𝑇 be the event that the test result
is positive.

We are given the following values:

• Pr(𝑈) = 0.002
• Pr(𝑈𝑐) = 0.998
• Pr(𝑇 ∣ 𝑈) = 0.98
• Pr(𝑇 ∣ 𝑈𝑐) = 0.01

We want to compute Pr(𝑈 ∣ 𝑇 ) using Bayes’ rule Pr(𝑈 ∣ 𝑇 ) = Pr(𝑇 ∣𝑈) Pr(𝑈)
Pr(𝑇 ) .

To compute Pr(𝑇 ), we apply the law of total probability Pr(𝑇 ) = Pr(𝑇 ∣ 𝑈)Pr(𝑈) + Pr(𝑇 ∣
𝑈𝑐)Pr(𝑈𝑐).
Substitute the known values, so that Pr(𝑇 ) = (0.98)(0.002) + (0.01)(0.998) = 0.00196 +
0.00998 = 0.01194.
Now apply Bayes’ rule, so that Pr(𝑈 ∣ 𝑇 ) = (0.98)(0.002)

0.01194 ≈ 0.00196
0.01194 ≈ 0.1642.

So the chance that you actually use the substance, given a positive test result, is about 16%.

Exercise 22 Bernoulli Distribution

Let 𝑋 ∼ Bernoulli(𝑝) with pmf

𝑓(𝑥; 𝑝) =
⎧{
⎨{⎩

𝑝, 𝑥 = 1,
1 − 𝑝, 𝑥 = 0,
0, otherwise,

0 < 𝑝 < 1.

Compute

1. the cumulative distribution function 𝐹(𝑥) = Pr(𝑋 ≤ 𝑥),
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2. the expected value E[𝑋], and

3. the variance Var(𝑋).

Solution

1. cdf

Since 𝑋 is discrete, its cdf is a step function.

• For 𝑥 < 0, 𝐹(𝑥) = 0

• For 0 ≤ 𝑥 < 1,

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) = Pr(𝑋 = 0) = 1 − 𝑝
• For 𝑥 ≥ 1,

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) = Pr(𝑋 = 0) + Pr(𝑋 = 1) = 1 − 𝑝 + 𝑝 = 1

So the cdf is:

𝐹(𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0
1 − 𝑝, 0 ≤ 𝑥 < 1
1, 𝑥 ≥ 1

2. expected value

Using the definition of expected value for a discrete random variable,

E[𝑋] = ∑
𝑥

𝑥 ⋅ Pr(𝑋 = 𝑥) = 0 ⋅ (1 − 𝑝) + 1 ⋅ 𝑝 = 𝑝.

3. variance

We use the formula:

Var(𝑋) = E[𝑋2] − (E[𝑋])2

Since 𝑋 only takes the values 0 and 1, 𝑋2 = 𝑋, so E[𝑋2] = E[𝑋] = 𝑝.
Then:

Var(𝑋) = 𝑝 − 𝑝2

= 𝑝(1 − 𝑝).
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Summary

• 𝐹(𝑥) = 1 − 𝑝 for 0 ≤ 𝑥 < 1, and 𝐹(𝑥) = 1 for 𝑥 ≥ 1

• E[𝑋] = 𝑝

• Var(𝑋) = 𝑝(1 − 𝑝)

Exercise 23 Exponential Distribution (Challenging)

Note: This is a very challenging exercise that requires you to evaluate an increasingly difficult
set of integrals. It’s acceptable to use a symbolic solver for these questions, but it’s also good
to see what “simple” integrals can look like in “simple” real problems.

Let 𝑋 ∼ Exponential(𝜆) with probability density function

𝑓(𝑥; 𝜆) = {𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0,
0, 𝑥 < 0, 𝜆 > 0.

Compute

1. the cumulative distribution function 𝐹(𝑥) = Pr(𝑋 ≤ 𝑥),

2. the expected value E[𝑋], and

3. the variance Var(𝑋).

Hints:

• Use integration by parts to compute E[𝑋]. Set 𝑢 = 𝑥 and 𝑑𝑣 = 𝜆𝑒−𝜆𝑥 𝑑𝑥.

• To compute E[𝑋2], apply integration by parts twice. First let 𝑢 = 𝑥2 and 𝑑𝑣 = 𝜆𝑒−𝜆𝑥𝑑𝑥.
This will leave an integral of the form ∫ 𝑥𝑒−𝜆𝑥 𝑑𝑥, which you already solved when com-
puting E[𝑋].

• Use the formula Var(𝑋) = E[𝑋2] − (E[𝑋])2.

Solution

1. cdf

To find 𝐹(𝑥), integrate the pdf from 0 to 𝑥, so that
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𝐹(𝑥) = ∫
𝑥

0
𝜆𝑒−𝜆𝑡 𝑑𝑡

= [−𝑒−𝜆𝑡]𝑥
0

= −𝑒−𝜆𝑥 + 𝑒−𝜆⋅0

= 1 − 𝑒−𝜆𝑥.
Then the cdf is

𝐹(𝑥) = {0, 𝑥 < 0
1 − 𝑒−𝜆𝑥, 𝑥 ≥ 0.

2. expected value

We need to to compute

E[𝑋] = ∫
∞

0
𝑥 ⋅ 𝜆𝑒−𝜆𝑥 𝑑𝑥.

Following the hint, this requires integration by parts.

Let - 𝑢 = 𝑥 so that 𝑑𝑢 = 𝑑𝑥,
- 𝑑𝑣 = 𝜆𝑒−𝜆𝑥 𝑑𝑥 so that 𝑣 = −𝑒−𝜆𝑥.

Then

E[𝑋] = [−𝑥𝑒−𝜆𝑥]∞
0 + ∫

∞

0
𝑒−𝜆𝑥 𝑑𝑥

= 0 + [− 1
𝜆𝑒−𝜆𝑥]

∞

0

= 0 + (0 − (− 1
𝜆))

= 1
𝜆.

3. variance

We nee to use the identity Var(𝑋) = E[𝑋2] − (E[𝑋])2.

To compute E[𝑋2], compute
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E[𝑋2] = ∫
∞

0
𝑥2 ⋅ 𝜆𝑒−𝜆𝑥 𝑑𝑥.

Step 1: first integration by parts

Let - 𝑢 = 𝑥2 so that 𝑑𝑢 = 2𝑥 𝑑𝑥,
- 𝑑𝑣 = 𝜆𝑒−𝜆𝑥 𝑑𝑥 so that 𝑣 = −𝑒−𝜆𝑥.

Then

E[𝑋2] = [−𝑥2𝑒−𝜆𝑥]∞
0 + ∫

∞

0
2𝑥𝑒−𝜆𝑥 𝑑𝑥

= 0 + 2 ∫
∞

0
𝑥𝑒−𝜆𝑥 𝑑𝑥.

Step 2: second integration by parts

Now evaluate ∫∞
0 𝑥𝑒−𝜆𝑥 𝑑𝑥, which is the same type of integral we solved for E[𝑋], but without

the constant 𝜆 out front.

Let - 𝑢 = 𝑥 so that 𝑑𝑢 = 𝑑𝑥,
- 𝑑𝑣 = 𝑒−𝜆𝑥 𝑑𝑥 so that 𝑣 = − 1

𝜆𝑒−𝜆𝑥.

Then

∫
∞

0
𝑥𝑒−𝜆𝑥 𝑑𝑥 = [−𝑥

𝜆𝑒−𝜆𝑥]
∞

0
+ ∫

∞

0

1
𝜆𝑒−𝜆𝑥 𝑑𝑥

= 0 + 1
𝜆 [− 1

𝜆𝑒−𝜆𝑥]
∞

0

= 1
𝜆2 .

So,

E[𝑋2] = 2 ⋅ 1
𝜆2 = 2

𝜆2 .

Now use the variance formula
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Var(𝑋) = E[𝑋2] − (E[𝑋])2

= 2
𝜆2 − ( 1

𝜆)
2

= 1
𝜆2 .

Summary

• 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥 for 𝑥 ≥ 0

• E[𝑋] = 1
𝜆

• Var(𝑋) = 1
𝜆2

Exercise 24 Some Practice with Expectations

Use the stated rules to simplify each expression.

a. 𝐸[ 2𝑋 + 3𝑌 ]

b. 𝐸[ 5𝑋 − 7𝑌 ]

c. 𝐸[ 4𝑋 + 𝑌 − 2𝑍 ]

d. 𝐸[ 10 ]

e. 𝐸[ 𝜋 ]

f. 𝐸[ 2𝑋𝑌 ] (assume 𝑋 and 𝑌 independent)

g. Let 𝑋 take values 1, 2, 3 each with probability 1/3. Compute 𝐸[𝑋2].

h. Let 𝑋 have pdf 𝑓𝑋(𝑥) = 2𝑥 on [0, 1]. Compute 𝐸[𝑋3].

i. Let 𝑋 take values 0, 1 with 𝑃(𝑋 = 1) = 𝑝. Compute 𝐸[log(1 + 𝑋)].

Solutions
a. 2𝐸[𝑋] + 3𝐸[𝑌 ]
b. 5𝐸[𝑋] − 7𝐸[𝑌 ]
c. 4𝐸[𝑋] + 𝐸[𝑌 ] − 2𝐸[𝑍]
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d. 10
e. 𝜋
f. 2𝐸[𝑋] 𝐸[𝑌 ]
g. 𝐸[𝑋2] = 12+22+32

3 = 14
3

h. 𝐸[𝑋3] = ∫1
0 𝑥3 ⋅ 2𝑥 𝑑𝑥 = ∫1

0 2𝑥4 𝑑𝑥 = 2
5

i. 𝐸[log(1 + 𝑋)] = (1 − 𝑝) log(1) + 𝑝 log(2) = 𝑝 log(2)

Exercise 25 Some Practice with Variances

Use the stated rules to simplify each expression.

a. Var(𝑋) in terms of 𝐸[𝑋2] and 𝐸[𝑋]

b. Var(3𝑋) (express in terms of 𝐸[𝑋2] and 𝐸[𝑋])

c. Var(𝑋 + 𝑌 ) in terms of Var(𝑋), Var(𝑌 ), and Cov(𝑋, 𝑌 )

d. Var(𝑋 + 𝑌 ) if 𝑋 and 𝑌 are independent

e. Var(2𝑋 − 3𝑌 ) (assume independence)

Solutions

a. 𝐸[𝑋2] − (𝐸[𝑋])2

b. 𝐸[9𝑋2] − (3𝐸[𝑋])2 = 9𝐸[𝑋2] − 9(𝐸[𝑋])2

c. Var(𝑋) + Var(𝑌 ) + 2Cov(𝑋, 𝑌 )

d. Var(𝑋) + Var(𝑌 )

e. 4Var(𝑋) + 9Var(𝑌 )

Exercise 26 Some Practice with Covariances

Use the stated rules to simplify each expression.

a. Cov(2𝑋, 3𝑌 )

24



b. Cov(−𝑋, 4𝑌 )

c. Cov(2𝑋 − 3𝑌 , 𝑍)

d. Cov(2𝑋, 𝑌 ) if 𝑋 and 𝑌 are independent

Solutions

a. 6Cov(𝑋, 𝑌 )

b. −4Cov(𝑋, 𝑌 )

c. 2Cov(𝑋, 𝑍) − 3Cov(𝑌 , 𝑍)

d. 2Cov(𝑋, 𝑌 ) = 0

Exercise 27 OLS, Interactions, and R

A Theoretical Result

For this portion, it will be helpful to have Brambor, Clark, and Golder (2006) handy.

Consider the linear interaction model 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍 + 𝜀 estimated by OLS.
For a given value 𝑍 = 𝑧, the marginal effect of 𝑋 on 𝐸(𝑌 ) is 𝛽1 + 𝛽3𝑧, with plug-in estimate
M̂E𝑋(𝑧) = ̂𝛽1 + ̂𝛽3𝑧 (i.e., see eq. 13 in Brambor, Clark, and Golder 2006).

Let V̂ar( ̂𝛽1), V̂ar( ̂𝛽3), and Ĉov( ̂𝛽1, ̂𝛽3) denote the corresponding elements from the estimated
variance–covariance matrix of ( ̂𝛽0, ̂𝛽1, ̂𝛽2, ̂𝛽3). Treat 𝑧 as fixed. Re-derive the standard error of
M̂E𝑋(𝑧) shown in eq. 8 of Brambor, Clark, and Golder (2006). In other words, show that

ŜE{M̂E𝑋(𝑧)} = √V̂ar ( ̂𝛽1 + ̂𝛽3𝑧) = √ V̂ar( ̂𝛽1) + 𝑧2 V̂ar( ̂𝛽3) + 2𝑧 Ĉov( ̂𝛽1, ̂𝛽3) .

Solution

First, we have

Var ( ̂𝛽1 + ̂𝛽3𝑧) = Var ( ̂𝛽1) + Var ( ̂𝛽3𝑧) + 2Cov ( ̂𝛽1, ̂𝛽3𝑧)

by the rules for the variance of a sum. Then we have

= Var ( ̂𝛽1) + 𝑧2Var ( ̂𝛽3) + 2𝑧Cov ( ̂𝛽1, ̂𝛽3)
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by the rules for variance of 𝑎𝑋 and covariance of 𝑋 and 𝑎𝑌 . The standard error is simply the
square root of the variance.

Thus, eq. 8 in Brambor, Clark, and Golder follows directly from the application of the rules
for variances and covariances.

A Computational Result

For this portion, it will be helpful to have Clark and Golder (2006) handy.

The code below reproduces Clark and Golder’s (2006) 1946-2000 Established Democracies
model in Table 2 on p. 698. See also eq. 4 on p. 695 for their model specification.

# load packages
library(sandwich) # for robust SEs

# load Clark and Golder's data
cg <- crdata::cg2006 # from my data package

# reproduce regression
f <- enep ~ eneg*log(average_magnitude) + eneg*upper_tier + en_pres*proximity
fit <- lm(f, data = cg)

# grab estimated coefs and var matrix
beta_hat <- coef(fit)
V_hat <- vcovCL(fit, cluster = ~ country, type = "HC1")

# print table (shows we reproduce!)
# modelsummary::modelsummary(fit, vcov = V_hat, fmt = 2)

1. Derive the formula for the marginal effect of eneg and its SE. *Hint: It depends on both
average_magnitude and upper_tier.

2. Use R to compute the marginal effect of eneg for the maximum value of log(average_magnitude)
and it’s SE. (You can fix upper_tier to 0, which simplifies the calculation.)

3. Use R to compute the marginal effect of eneg and SE for a range of values from the
minimum value of log(average_magnitude). Compute a 90% confidence interval and
create a marginal effect plot like those in Figure 1 of Clark and Golder (2006). Note:
you should have the log of average_magnitude (not average_magnitude itself) along
the 𝑥-axis.

Solution

Question 1

Clark and Golder fit the model
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ElectoralParties = 𝛽0 + 𝛽1 Ethnic + 𝛽2 ln(Magnitude) + 𝛽3 UppertierSeats
+ 𝛽4 PresidentCandidates + 𝛽5 Proximity
+ 𝛽6 Ethnic × ln(Magnitude) + 𝛽7 Ethnic × UppertierSeats
+ 𝛽8 PresidentCandidates × Proximity + 𝜖.

Taking the derivative w.r.t. Ethnic, we have

𝜕 ElectoralParties
𝜕 Ethnic = 𝛽1 + 𝛽6 ln(Magnitude) + 𝛽7 UppertierSeats.

Question 2

# load packages
library(tinytable)

# value of z = log(average_magnitude) at its maximum
z <- max(log(cg$average_magnitude), na.rm = TRUE)

# point estimate of marginal effect of eneg
me <- beta_hat["eneg"] + z * beta_hat["eneg:log(average_magnitude)"]

# variance components
v1 <- V_hat["eneg", "eneg"]
v3 <- V_hat["eneg:log(average_magnitude)", "eneg:log(average_magnitude)"]
c13 <- V_hat["eneg", "eneg:log(average_magnitude)"]

# standard error from the formula
se <- sqrt(v1 + z^2 * v3 + 2 * z * c13)

# 90% confidence interval
ci <- me + c(-1, 1)*1.64 * se

data.frame(
log_mag = z,
me,
se,
ci_lower = ci[1],
ci_upper = ci[2]

)

log_mag me se ci_lower ci_upper
eneg 5.010635 1.432714 0.8246638 0.08026526 2.785162
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Question 3

# load packages
library(ggplot2)

Attaching package: 'ggplot2'

The following object is masked from 'package:tinytable':

theme_void

# grid over observed log(average_magnitude)
z<- seq(min(log(cg$average_magnitude), na.rm = TRUE),

max(log(cg$average_magnitude), na.rm = TRUE),
length.out = 200)

# point estimate of marginal effect of eneg
me <- beta_hat["eneg"] + z * beta_hat["eneg:log(average_magnitude)"]

# standard error from the formula
se <- sqrt(v1 + z^2 * v3 + 2 * z * c13)

# 90% confidence interval
ci_lower <- me - 1.64 * se
ci_upper <- me + 1.64 * se

# combine qis into data frame
gg_data <- data.frame(
log_mag = z,
me,
se,
ci_lower,
ci_upper

)

# draw plot
ggplot(gg_data, aes(x = log_mag, y = me,

ymin = ci_lower,
ymax = ci_upper)) +
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geom_ribbon(fill = "grey70") +
geom_line()
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