Week 1 Exercises

I created some notes that review the concepts required for these exercises, but you should draw
on familiar textbooks and notes where possible.

And this is an ambitious set of exercises. Make a serious effort to freshen your mathematical
toolkit. Your effort will make for a smoother semester. If you find yourself struggling to finish
all the problems, then focus on 4(f), 4(g), 5, 7, 8, 9, 10, 13(1), 14, 15, 20, 21, 22, 24(c), 24(g),
25(b), 25(e), 26(c), and 27. Use the other exercises as needed to brush up on weaknesses.

1 Fractions, Logarithms, and Exponents

Exercise 1 Some Practice with Fractions

Simplify each of the following;:
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Exercise 2 Some Practice with Logarithms

You can assume arguments to logs are always positive, for the sake of these exercises.

Simplify each of the following;:

a. log,,(10°)

b. log(e3) (note: log(x) refers to the natural log in our class)
c. log(3z) + log(4)

d. log(z3y?)
22
€. log <y3>

f. log (ﬁ mf)
i=1

Solutions

a. log,,(10°) =5
b. log(e?) =3

c. log(3z-4) = log(12x)
d. 3log(z) + 2log(y)

e. 2log(z) — 3log(y)

f. Z 2log(z;)
=1



Exercise 3 Some Practice with Exponents

Simplify each of the following:

e. 10°-10°%
£ (ab?)’

Solutions

Exercise 4 Some Practice Combining Fractions, Logarithms, and Expo-
nents

Simplify each of the following:




2
d. log<ex)

o, log(z) + log(y)
' 2

312
f. log<a b )
C
g' log (H?:l ﬂ-yi (1 — ﬁ)(lfy”)

Solutions

a. x+1

b. log(x)

c. e*

d. 2 —log(z)

log(zy)
2

f. 3log(a) + 2log(b) — log(c)

(Z;l yz> log(m) + (n — Z?Zl yl> log(1 —7)
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Exercise 5 Inverse Logit

Show that the two common forms of the inverse-logit function

1 e’
filz) = Ttex and  fy(z) = 1+ ex
are algebraically equivalent for every real number z.
Solution
Start with f,(z) = H% Multiply the numerator and denominator by the strictly positive

quantity e” (which leaves the fraction’s value unchanged). After a bit of algebra, we obtain

fo-

fila) = ——S = - — fya).



Hence f;(x) = fy(z), so the two expressions are equivalent for all .

2 Derivatives

Exercise 6 Some Practice with Derivatives
Differentiate each of the following:

a. Let f(z)=5

b. Let f(x) = 2*

c. Let f(x) =322 — 42+ 7

d. Let f(z) = e>®

e. Let g(t) = log(t®)

f. Let h(y) =y’ log(y)

g. Let f(z) = (22 +1)5

h. Let f(z) = e«

x

i. Let q(u) = u2e®’

log(2? +1
j. Let r(z) = 7og(z +1)

eZ
Solutions
a. 0. Constant rule.

b. 4z3. Power rule (nz™1).

c. 6 — 4. Term-by-term power rule.

o,

. 2e2*_ Chain rule on eF*.

3
e. o Rewrite log(t?) = 3log(t), then logarithm rule.



f. 3y?log(y) + y2. Product rule on y3-log(y).

g. 10z (2 4+ 1)%. Chain rule on an outer fifth power.

r—1
h. e*———. Rewrite e®z~1, then product rule.
x

i. ¢’ (2u + 3u*). Product rule; inner derivative d/du(e*’) = ¢ -3u?.

; z22j1 — log(z2 +1)

. Quotient rule with a chain inside log(22 + 1).

eZ
Exercise 7 An Important Preview

Let ¢(m) = Slog(m) + (n — S)log1l — ) for 0 < 7 < 1, where S and n (with 0 < S < n) are

2
fixed numerical constants. Find %:) and %@.

Solution

e First derivative

i S n—38§

dr — «w 1—m

(Quotient-inside-log derivatives: d/dn[log(m)] = 1/,
d/dr[log(1 —m)] =—-1/(1—m).)

¢ Second derivative

d?¢ S n—>9~

dr2 ~ w2 (1—m)?

Each term differentiates again via the power rule.
The result is negative for all 7 € (0,1), so ¢(m) is concave.

Exercise 8 Inverse Logit

Define p(0) = ﬁ for € R. Find p’(6) and p” ().

Solution



e First derivative

Rewrite p(8) = (14 e¢~?)~! and apply the chain rule:

e

PO)=—(1+e?) 2 (—e?) = (1+e0)2

= p(0)[1 —p(0)].

¢ Second derivative

Differentiate p’(f) = p(1 — p) using the product rule:

p"(0) =p' (1—p)—pp’ =p(0)[1—p6)][1—2p(6)].

The factor 1 —2p(6) shows the curve’s slope is steepest (and p” is zero) when p(6) = 0.5.

Exercise 9 Brambor, Clark, and Golder (2006)

Let Ey | @1, z5] = By+ 5121+ Poxe+ B3x,24, where B, ..., B3 are constants. Find the marginal
OEly |y, z,]
O0x,

effect of z; on y. That is, compute

Solution

Differentiate with respect to x; while treating x, as constant, so that

OEy | vy, 2]

oz, = 3 + B37,.

The marginal effect of x; depends on z4; when x4, = 0, the effect is 3,, and it changes by [,
units for every unit increase in x,.

Exercise 10 Brambor, Clark, and Golder (2006) for Cubic Polynomial

Let E[y | 2] = By + Bix + Box® + B323, where f3, ... , B3 are constants. Find the marginal effect
OEly | a]
or

of x on y. That is, compute

Solution
Apply the power rule term-by-term so that

OEy | x]

8115‘ = 61 + 2,8237 + 3ﬁ3$2.



The marginal effect varies with x in a quadratic fashion; the sign and magnitude are governed
by the coefficients on the polynomial terms.

3 Integrals

Exercise 11 Some Practice Problems for Integrals

Compute each integral.

a. /7da:

2

b. 28 dx

C.

(32% —4) dx
1
e dx
1
—dz
x
4z e dx Hint: let u = 22

x e® dx Hint: integration by parts with u = x.

1

h. x?dx

S— T T Y

Solutions

a. 7x +C

128
b. - (power rule %7 evaluated from 0 to 2).

c. 23 —dx+C

e3—1

(antiderivative €3 /3 then plug in 1 and 0).
e. log|z|+C

f. 2e%” 4+ C (substitute v = 22 =42 dz = 2 du).



g. e’(z —1) + C (integration by parts: u =z, dv = e*dx).

1
h. 3 (antiderivative /3 evaluated from 0 to 1).

4 Matrices

Exercise 12 Some Practice with Transposes

Find the transpose of each of the following matrices:

1 2
a.A:[?) 4}
0 —1 2
b.B_[5 . 1]
7
c. C=18
9
Solutions
, |13
a.A—[2 4]
b. B’ =

0 5
-1 3
2 1

c. ¢'=[1 8 9

Exercise 13 Some Practice with Matrix Multiplication
Problem 1

Multiply A and B using paper-and-pencil. Check your work with R.

7 8
il e 10]
11 12

Problem 2
Let



2 1 0
A=l gy
Compute A’A (i.e., AT A) using paper-and-pencil. Check your work with R.

Problem 1 Solution

Check conformability: A is 2 x 3 and B is 3 x 2, so AB is 2 x 2.

ap — | (DM +(2)(9) +(3)(11) (1)(8)+<2>(10)+(3)(12)]:[58 64}
(4)(7) + (5)(9) + (6)(11 ( 139 154|°

(=2
~—
—
~—
—

=~
~—
—

Qo
~—

+
—

ot
~—
—~

—

=)
~—

+

A <- matrix(c(1, 2, 3,
4, 5, 6),

nrow = 2, byrow = TRUE)
B <- matrix(c( 7, 8,
9, 10,
11, 12),
nrow = 3, byrow = TRUE)

A Yx% B # confirm work

[,11 [,2]
[1,] 58 64
[2,] 139 154

Problem 2 Solution

1. Conformability
Ais 2 x 3,80 A’A will be 3 x 3.

2. Form A’

A =

2 -1
1 3.
0 4

3. Multiply entry-by-entry

10



2)2)+ (=D)(=1) @)D+ (=1A) (2)(0)+ (=1)(4) 5 -1 —4
AA=| D)E2)+B)(=1) DD+ 3)(3) (1)(0)+(3)(4)} = [—1 10 12]
0)2)+ (=1  (0)(1)+(4)(3)  (0)(0) + (4)(4) -4 12 16
A <- matrix(c( 2, 1, O,
-1, 3, 4),

nrow = 2, byrow = TRUE)

t(A) %*% A # confirm work

(,11 [,2]1 [,3]

5 -1 -4
-1 10 12
-4 12 16

Exercise 14 Matrices, OLS, and R

For the linear model y = X + ¢, where X is an n x k full-rank design matrix (including a
column of ones), we define

OLS estimator: 3 = (X' X)'X'y.
Residual vector: e = y— Xp.
Predicted values: § = Xg.

/
. : . . 5 . _ - e'e
Classical variance—covariance matrix: Var,(8) = 62 (X’'X)"!, where 62 = P
n J—

. Write an R function ols(X, y) that returns a list with the coefficient estimates beta_hat,

the classical variance matrix Var_cl, the residuals e, and the predicted values y_hat.

. Use the penguins dataset in the {palmerpenguins} package to test your function. The

following starter code prepares X and y.

# load packages

library(palmerpenguins)

# 1.

drop NAs

penguins_complete <- na.omit(penguins)

# 2.

§ s

make response vector (y)
penguins_complete$body_mass_g # numeric vector (n x 1)

11



## 3. make design matriz (X)
X_predictors <- as.matrix(penguins_completel[ ,
c("bill_length mm",
"bill depth_mm",
"flipper_length_mm")])

X <- cbind("(Intercept)" = 1, X_predictors)
Solution
The function.

ols <- function(X, y) {
## 1. Components of (X'X) and its inverse

X_transpose <- t(X) # X'
XtX <- X_transpose %*% X # X'X
XtX_inv <- solve (XtX) # (X'X)"{-1}

## 2. OLS estimator beta_hat
Xty <- X_transpose %*} y # X'y
beta_hat <- XtX_inv %*J), Xty # X'X)°{-1} X'y

## 3. Fitted values (y_hat) and residuals (e)
y_hat <- X 7xJ, beta_hat
e <- y - y_hat

## 4. Classical wvariance-covariance matriz (Var_cl)
n <- nrow(X)

k <- ncol(X)

RSS <- t(e) W*h e # e'e

sigma2_hat <- as.numeric(RSS) / (n - k) # \hat\sigma~2

Var_cl <- sigma2_hat * XtX_inv # \hat\sigma~2 (X'X)"{-1}

## 5. Return list matching notation

list(
beta_hat = beta_hat,
Var_cl = Var_cl,
e = e,
y_hat = y_hat
)

12



Demonstration with the penguins dataset.

# load packages
library(palmerpenguins)

# 1. drop NAs
penguins_complete <- na.omit(penguins)

# 2. make response vector (y)
y <- penguins_complete$body_mass_g # numeric vector (n x 1)

## 3. make design matriz (X)
X_predictors <- as.matrix(penguins_completel ,
c("bill_length_mm",
"bill depth_mm",
"flipper_length_mm")])

X <- cbind("(Intercept)" = 1, X_predictors)

# compute quantities
results <- ols(X, y)

# print each component

results$beta_hat # beta-hat
[,1]
(Intercept) -6445.476043
bill_length_mm 3.292863
bill_depth_mm 17.836391

flipper_length_mm 50.762132

results$Var_cl # classical VCOV

(Intercept) bill_length_mm bill_depth_mm flipper_length_mm

(Intercept) 320503.2363 805.525086  -6528.69599 -1211.206658
bill_length_mm 805.5251 28.793240 -17.85211 -8.786474
bill_depth_mm -6528.6960 -17.852112 191.15678 20.067377
flipper_length mm -1211.2067 -8.786474 20.06738 6.236320

13



head(results$e) # first few residuals

[,1]
[1,] 545.23877
[2,] 363.29828
[3,] -656.89703
[4,] -366.70577
[5,] -46.16813
[6,] 436.95010

head(results$y_hat) # first few fitted values

[,1]
[1,] 3204.761
[2,] 3436.702
[3,] 3906.897
[4,] 3816.706
[5,]1 3696.168
[6,] 3188.050

Exercise 15 Gradients and Hessians

Consider the function of two variables f(z,y) = 322y + 2¢%¥ — 3%, Compute (1) the gradient
vector V f(z,y) and (2) the Hessian matrix H,(z,y).

Gradient

The gradient collects the first-order partial derivatives.

0
—f = 6zy + 2y eV,
ox
or _ 3x2 + 22 ™ — 3y°.
Ay
Hence
6y + 2y e™
Vflz,y) = .

2. Hessian

14



The Hessian collects the second-order partial derivatives.

82

aTcJ; = 6y + 2y°e™,
o0 f

o 6z 4 2e™Y 4 2zy e™,

T oY

82

a—‘z = —6y + 2x%e™V.

Y

Notice that the mixed partials are equal (0% f/0x Oy = 02 f /9y Ox).

The Hessian is

6y + 2% 6x + 2e™Y 4 2zy e™Y

Hy(z,y) =
! 6 + 2e™Y 4 2zy ™Y —6y + 222%™

5 Probability Theory

Exercise 16 Some Results of the Axioms and Definition of Probability

Prove the following results:

. Pr(0) =0.

. If event A C B, then Pr(A) < Pr(B).
. For event A, 0 < Pr(A) <1.

. For any event A, Pr(A°) =1—Pr(A).

o0 T o

Hints

a. Use Axiom 3.

b. Notice that B = AU (BN A¢). Then use the Additional Rule for Two Disjoint Events.

c. Axiom 1 establishes that 0 < Pr(A). Now show that Pr(A) < 1. To do this, the result
from (b).

d. Notice that Pr(S) = Pr(A) + Pr(A°) and follow this forward.

Solution

a. Pr(0) = Pr( U=, @) = >, Pr(0). This equality can hold only if Pr(f) = 0.
b. B= AU (BN A®). By the addition rule for disjoint events, Pr(B) = Pr(A4) + Pr(BnN A°).
By Axiom 1, Pr(B N A°) >0, so Pr(A) < Pr(B).

15



c. By Axiom 1, Pr(4) > 0. Since A C S (the sample space), by monotonicity we have

Pr(A) <Pr(S)=1. Thus 0 < Pr(A) < 1.

d. Pr(S) =Pr(A) + Pr(A°). Then 1 = Pr(A4) 4+ Pr(A°), so Pr(A°) =1 —Pr(A).

Exercise 17 Simplifying the Multiplication Rule

Simplify Pr(A | B) for the following scenarios.

a
b
¢

o,

. AC Band Pr(B) > 0.
. A and B are disjoint and Pr(B) > 0.
. B is the empty set (tricky!).

B is the sample space S.

Solution

We simplify Pr(A | B) = Z2405) i) each case:

a.

b.

Pr(B)

If AC B and Pr(B) >0, then ANB=A. So
Pr(ANB Pr(A
Pr(A|B) = Pgr(B)) = PrEB%'
If A and B are disjoint and Pr(B) > 0, then AN B =, and Pr(0) = 0. So
If B =, then Pr(B) =0, and the expression Pr(4 | B) = Prp(;?;?) is undefined.
Conditional probability is only defined when the probability of the conditioning event is

positive.

. If B =S (the sample space), then ANS = A and Pr(S) = 1. So

Pr(A|S) = "A = pr(4).

Exercise 18

Suppose A and B are independent and Pr(B) < 1. Find Pr(A¢B¢) in terms of A and B.
Prove that A¢ and B¢ are independent.

Solution

First, show that A¢ and B are independent.

16



Pr(A°¢n B¢) = Pr([AU BJ°)
—1-Pr(AUB)
=1—[Pr(A) +Pr(B) —Pr(AN B)]
=1—Pr(A) — Pr(B) 4+ Pr(A) Pr(B)
=[1—Pr(A4)] x [1 —Pr(B)]
= Pr(A°) x Pr(B°)

Then, by independence, we know that Pr(A¢|B¢) = Pr(A°) and that Pr(A°) =1 —Pr(A).

Exercise 19 Independence when Pr(B) =0

Suppose A and B are events and Pr(B) = 0. (A is any event.) Find Pr(AN B). Prove that A
and B are independent.

Solution

Since Pr(B) = 0, we have Pr(AN B) < Pr(B) = 0, hence Pr(AN B) = 0. Also Pr(4)Pr(B) =
Pr(A)-0=0. Therefore Pr(AN B) = Pr(A)Pr(B), so A and B are independent.

Exercise 20 Sixes

Suppose a six-sided die is rolled 10 times. What’s the probability of...

a. all sixes?
b. not all-sixes?
c. all not-sixes?

Solution

1/6)10

—(1/6)1°
5/6)10

o T

A~ =~

17



Exercise 21 Drug Testing (Bayes' Rule)

A drug test is used to detect the presence of a banned substance in professional athletes.
Suppose that 2 in every 1,000 athletes use the substance. The test correctly identifies users
98% of the time. However, it also produces a false positive 1% of the time for non-users. You
are randomly selected for testing, and your result comes back positive. Use Bayes’ rule to
compute the probability that you actually use the substance.

Solution

Let U be the event that you use the banned substance and 7' be the event that the test result
is positive.

We are given the following values:

« Pr(U) = 0.002
Pr(U°) = 0.998
Pr(T | U) = 0.98
« Pr(T | U®) =0.01

We want to compute Pr(U | T') using Bayes’ rule Pr(U | T) = %.

To compute Pr(T'), we apply the law of total probability Pr(T) = Pr(T | U) Pr(U) + Pr(T |
Ue)Pr(U°).

Substitute the known values, so that Pr(T) = (0.98)(0.002) + (0.01)(0.998) = 0.00196 +
0.00998 = 0.01194.

Now apply Bayes’ rule, so that Pr(U | T) = <0‘g§0)£?§0402) ~ 30098 ~ 0.1642.

So the chance that you actually use the substance, given a positive test result, is about 16%.

Exercise 22 Bernoulli Distribution

Let X ~ Bernoulli(p) with pmf

D, r=1,
flzsp)=<1—p, =0, 0<p<l.
0, otherwise,

Compute

1. the cumulative distribution function F'(x) = Pr(X < z),

18



2. the expected value E[X], and

3. the variance Var(X).

Solution
1. cdf

Since X is discrete, its cdf is a step function.

e Forz <0, F(z) =0

e For0<z <1,

o Forx>1,

So the cdf is:

0, x <0
Flx)=<1—p, 0<z<1
1, z>1

2. expected value

Using the definition of expected value for a discrete random variable,
E[X]:Zx-Pr(X:m):O-(l—p)—|—1~p:p.
3. variance

We use the formula:

Var(X) = E[X?] — (B[X])?

Since X only takes the values 0 and 1, X? = X, so E[X?] = E[X] = p.
Then:

Var(X) = p —p?
=p(l—p).

19



Summary

e Flz)=1—pfor0<z<1,and F(z)=1forz>1
« EX]=p

« Var(X) = p(1—p)

Exercise 23 Exponential Distribution (Challenging)

Note: This is a very challenging exercise that requires you to evaluate an increasingly difficult
set of integrals. It’s acceptable to use a symbolic solver for these questions, but it’s also good
to see what “simple” integrals can look like in “simple” real problems.

Let X ~ Exponential(\) with probability density function

e x>0
Ty \) = ’ -7 A>0.
Sz d) {O, x <0,

Compute

1. the cumulative distribution function F'(x) = Pr(X < z),
2. the expected value E[X], and

3. the variance Var(X).
Hints:

o Use integration by parts to compute E[X]. Set u = z and dv = A\e™** dz.

e To compute E[XQ]7 apply integration by parts twice. First let v = 22 and dv = \e ?dx.
This will leave an integral of the form [ xze M dz, which you already solved when com-
puting E[X].

« Use the formula Var(X) = E[X?] — (E[X])".

Solution

1. cdf
To find F(z), integrate the pdf from 0 to x, so that

20



Then the cdf is

F(x):{o, <0

l—e_’\w, x> 0.

2. expected value

We need to to compute

E[X] = / T Ae M da.
0

Following the hint, this requires integration by parts.

Let - u = x so that du = dx,

- dv = X e M dzx so that v = —e 7,
Then
E[X] = [—xe*)‘m];o +/ e dg
(o}
1 o0
=0 _ - 7)\1]
+ [ )\e ,
o - ()
N A
_1
=

3. variance

We nee to use the identity Var(X) = E[X?] — (E[X])2

To compute E[X?], compute

21



E[X?] = / 2 e M dx.
0

Step 1: first integration by parts

Let - u = 2?2 so that du = 2z dz,
- dv = X e M dzx so that v = —e 7,

Then

o0

E[X?] = [—a:Qe*)‘x]oo —l—/ 2ze M dx
0

oo
= 0—|—2/ xe N dr.
0

Step 2: second integration by parts

Now evaluate jéoo xe ™ dx, which is the same type of integral we solved for E[X], but without
the constant A out front.

Let - u = x so that du = dx,
- dv = e *dx so that v = —%e*’\””.

Then

So,

Now use the variance formula

22



Var(X) = B[X?] — (E[X])?
2 1
a0
-

Summary

e F(z)=1—e* for z >0

Exercise 24 Some Practice with Expectations

Use the stated rules to simplify each expression.

a. E[2X +3Y]

b. E[5X — 7Y ]

c. E[AX +Y —27]

d. E[10]

e. E[7]

f. E[2XY] (assume X and Y independent)

g. Let X take values 1,2,3 each with probability 1/3. Compute E[X?].
h. Let X have pdf fy(z) = 2z on [0, 1]. Compute E[X?3].

i. Let X take values 0,1 with P(X = 1) = p. Compute E[log(1 + X)].

Solutions

a. 2E[X] + 3E]Y]

b. 5E[X] —TE[Y]

c. 4E[X] + E[Y] - 2E[Z]
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d. 10
e.T

]
&
I
I

Jr
[\v]
[ V)
+
w
N
|
R

3 _(lo 4 2
_/(;x -2:1:dx—f0 2t dr = ¢
(1 —p)log(1) + plog(2) = plog(2)

Exercise 25 Some Practice with Variances

Use the stated rules to simplify each expression.

a. Var(X) in terms of E[X?] and E[X]
b. Var(3X) (express in terms of E[X?] and E[X])
c. Var(X +Y) in terms of Var(X), Var(Y), and Cov(X,Y)
d. Var(X +Y) if X and Y are independent
e. Var(2X — 3Y) (assume independence)
Solutions
a. BE[X?] — (E[X])?
b. E[9X?] — (3E[X])? = 9E[X?] — 9(E[X])?
c. Var(X) + Var(Y) +2Cov(X,Y)
d. Var(X) + Var(Y)

e. 4Var(X)+9Var(Y)
Exercise 26 Some Practice with Covariances

Use the stated rules to simplify each expression.

a. Cov(2X,3Y)
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b. Cov(—X,4Y)

c. Cov(2X —3Y,2)

d. Cov(2X,Y) if X and Y are independent
Solutions

a. 6Cov(X,Y)

b. —4Cov(X,Y)

c. 2Cov(X,Z)—3Cov(Y,Z)

d. 2Cov(X,Y) =0

Exercise 27 OLS, Interactions, and R

A Theoretical Result
For this portion, it will be helpful to have Brambor, Clark, and Golder (2006) handy.

Consider the linear interaction model Y = 3, + 5, X + 3,7 + $3XZ + € estimated by OLS.
For a given value Z = z, the marginal effect of X on E(Y) is 5, + B3z, with plug-in estimate
MEx(z) = B; + B3z (i.e., see eq. 13 in Brambor, Clark, and Golder 2006).

Let Var(3,), \7:;(53), and 60\V(BA1, 33) denote the corresponding elements from the estimated
variance—covariance matrix of (8, 51, By, B3). Treat z as fixed. Re-derive the standard error of
ME x(z) shown in eq. 8 of Brambor, Clark, and Golder (2006). In other words, show that

SEAME ()} = \/Var (B, + fy2) = \/ Var(By) + 22 Var(By) + 22 Cov(By, o) -

Solution

First, we have
Var (51 + 337;) = Var (Bl) + Var (,6732) + 2Cov (Bl, Bgz)

by the rules for the variance of a sum. Then we have

= Var (Bl) + z2Var (Bg) + 22Cov (Bla 33)
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by the rules for variance of aX and covariance of X and aY. The standard error is simply the
square root of the variance.

Thus, eq. 8 in Brambor, Clark, and Golder follows directly from the application of the rules
for variances and covariances.

A Computational Result
For this portion, it will be helpful to have Clark and Golder (2006) handy.

The code below reproduces Clark and Golder’s (2006) 1946-2000 Established Democracies
model in Table 2 on p. 698. See also eq. 4 on p. 695 for their model specification.

# load packages
library(sandwich) # for robust SEs

# load Clark and Golder's data
cg <- crdata::cg2006 # from my data package

# reproduce regression
f <- enep ~ enegxlog(average_magnitude) + enegkupper_tier + en_pres*proximity
fit <- 1m(f, data = cg)

# grab estimated coefs and var matrix
beta_hat <- coef(fit)
V_hat <- vcovCL(fit, cluster = ~ country, type = "HC1")

# print table (shows we reproduce!)
# modelsummary: :modelsummary(fit, vcov = V_hat, fmt = 2)

1. Derive the formula for the marginal effect of eneg and its SE. *Hint: It depends on both
average_magnitude and upper_tier.

2. Use R to compute the marginal effect of eneg for the maximum value of log(average_magnitude)
and it’s SE. (You can fix upper_tier to 0, which simplifies the calculation.)

3. Use R to compute the marginal effect of eneg and SE for a range of values from the
minimum value of log(average_magnitude). Compute a 90% confidence interval and
create a marginal effect plot like those in Figure 1 of Clark and Golder (2006). Note:
you should have the log of average_magnitude (not average_magnitude itself) along
the x-axis.

Solution
Question 1

Clark and Golder fit the model
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ElectoralParties = 3, + ; Ethnic + 5 In(Magnitude) + 5 UppertierSeats
+ 3, PresidentCandidates + (5 Proximity
+ B¢ Ethnic x In(Magnitude) + 5, Ethnic x UppertierSeats
+ B¢ PresidentCandidates x Proximity + e.

Taking the derivative w.r.t. Ethnic, we have

0 ElectoralParties
0 Ethnic

= (B, + B¢ In(Magnitude) + 3, UppertierSeats.

Question 2

# load packages
library(tinytable)

# value of z = log(average_magnitude) at its maximum
z <- max(log(cg$average_magnitude), na.rm = TRUE)

# point estimate of marginal effect of eneg
me <- beta_hat["eneg"] + z * beta_hat["eneg:log(average_magnitude)"]

# variance components

vl <- V_hat["eneg", "eneg"]

v3 <- V_hat["eneg:log(average_magnitude)", "eneg:log(average_magnitude)"]
c13 <- V_hat["eneg", "eneg:log(average_magnitude)"]

# standard error from the formula
se <- sqrt(vl + z72 * v3 + 2 x z x cl13)

# 907 confidence interval
ci <- me + c(-1, 1)*1.64 * se

data.frame(

log_mag = z,
me,
Sef
ci_lower = ci[1],
ci_upper = cil[2]
)
log_mag me se ci_lower ci_upper

eneg 5.010635 1.432714 0.8246638 0.08026526 2.785162
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Question 3

# load packages
library(ggplot2)

Attaching package: 'ggplot2'

The following object is masked from 'package:tinytable':

theme_void

# grid over observed log(average_magnitude)

z<- seq(min(log(cg$average_magnitude), na.rm = TRUE),
max(log(cg$average_magnitude), na.rm = TRUE),
length.out = 200)

# point estimate of marginal effect of eneg
me <- beta_hat["eneg"] + z * beta_hat["eneg:log(average_magnitude)"]

# standard error from the formula
se <- sqrt(vl + z72 * v3 + 2 x z x cl13)

# 90% confidence interval
ci_lower <- me - 1.64 * se
ci_upper <- me + 1.64 * se

# combine qis into data frame
gg_data <- data.frame(
log_mag = z,
me,
se,
ci_lower,
ci_upper

# draw plot

ggplot(gg_data, aes(x = log_mag, y = me,
ymin = ci_lower,
ymax = ci_upper)) +
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geom_ribbon(fill = "grey70") +
geom_line()

log_mag
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